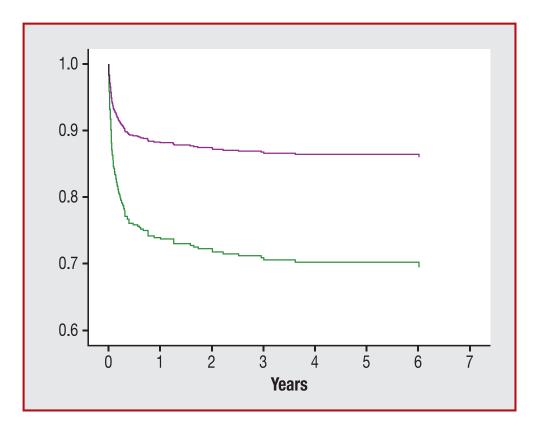
QUEL INTÉRÊT D'UN BILAN EXTRACARDIAQUE ?

Dr Daniela Laux UE3C – Lowendal Paris Hôpital Marie Lannelongue Hôpital Necker Enfants Malades



Plan du cours

- Intérêt d'un bilan extracardiaque
- Conduite à tenir pratique
- Cardiopathies et anomalies extracardiaques malformatives
- Cardiopathies et anomalies génétiques

Les anomalies extracardiaques aggravent considérablement le pronostic global postnatal

Figure 2. Actuarial survival curve of associated and isolated congenital heart disease (CHD). Purple line: survival of isolated CHD; Green line: survival of associated CHD with a major extracardiac anomaly.

Bensemlali et al. 2016 ACVD

Quel est l'intérêt d'un bilan extracardiaque prénatal ?

Deux situations cliniques en pratique:

- 1. Le cœur est malade/malformé: recherche des malformations extracardiaques associées qui aggravent/compliquent la prise en charge postnatale
- 2. Un autre organ est malformé: recherche d'une atteinte cardiaque associée

Objectif: Exclure ou identifier un syndrome polymalformatif ou éventuel maladie génétique chez le fœtus atteint

Malformation fœtale isolée ou syndrome polymalformatif ?

Conduite à tenir en pratique

- Adressage pour PEC dans un CPDPN
- Echographie fœtale globale par un échographiste référent
- Echocardiographie fœtale par un cardiopédiatre spécialisé
- Proposition de recherche génétique (amniocentèse avec CGH-Array) quasiment systématique
- Discussion de l'intérêt d'une IRM fœtale vers 32 SA (recherche d'éléments en faveur d'une association CHARGE: présence ou absence des canaux semi-circulaires)

CARDIOPATHIE ET MALFORMATION EXTRACARDIAQUE

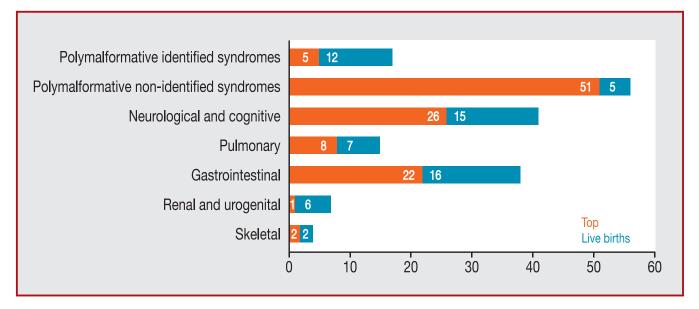
Impact prénatal

Impact postnatal

Exemples particuliers

Un problème courant

Total n= 2036 TOP n= 738 (39%)


Table 1 Distribution of extracardiac anomalies in congenital heart disease.							
	Total	Overall ECAs	Isolated CAs	ECMs	ECMs without CA	ECMs with CA	Isolated CHD
Heterotaxy, including isomerism and mirror-imagery	69	22 (31.9)	1	22	21	1	38 (55.1)
Anomalies of the venous return	27	5 (18.5)	2	3	3	0	20 (74.1)
Anomalies of the atria and interatrial communications	5	1 (20)	1	1	0	1	3 (60)
Anomalies of the atrioventricular junctions and valves	156	60 (38.5)	40	30	20	10	89 (57)

12 % avaient une malformation extracardiaque

Ventricular septal defects	55	22 (40)	14	12	8	4	29 (52.7)
Anomalies of the ventricular	809	126 (15.6)	82	69	44	25	650 (80.3)
outflow tracts							
Anomalies of the	243	62 (25.5)	36	40	26	14	172 (70.8)
extrapericardial arterial		. ,					. ,
trunks							
Congenital anomalies of the	2	0 (0)	0	0	0	0	2 (100)
coronary arteries							
Cardiomyopathy	31	12 (38.7)	3	10	9	1	17 (54.8)
Atrioventricular block	39	1 (2.6)	0	1	1	0	38 (97.4)
Arrhythmia	31	1 (3.2)	0	1	1	0	30 (96.8)
Tumor	45	25 (55.6)	2	24	23	1	18 (40)
Ventricular diverticulum or	5	0 (0)	0	0	0	0	5 (100)
ancuryon							
Total	2036	378 (18.6)	200 (9.8)	239	178 (8.7)	61 (3)	1572 (77.2)
				(11.7)			
	1 (0/)						

Data are expressed as number or number (%). CA: cytogenetic anomaly; CHD: congenital heart disease; ECA: extracardiac anomaly (CA+ECM); ECM: extracardiac malformation.

Répartition des anomalies extracardiaques

Figure 1. Type of non-extracardiac malformation (without cytogenetic anomaly). Polymalformative identified syndromes are known associations, such as VACTERL or CHARGE, without cytogenetic confirmation; polymalformative non-identified syndromes involve two organ systems. TOP: termination of pregnancy.

Total n= 2036 TOP n= 738 (39%)

Cardiopathies et anomalies extracardiaques malformatives

Association avec au moins une autre malformation:

• TGV:	8 %
 Fallot: 	29%
 Hypoplasie du cœur gauche: 	20%
 Coarctation de l'aorte: 	17%

Cardiopathies et anomalies extracardiaques

Table 1 Incidence of extracardiac abnormalities (ECA) and chromosomal abnormalities (CA) found in 379 fetuses diagnosed with congenital heart defects (CHD): comparison of our findings in Toronto with those of the Italian Society of Pediatric Cardiology (ISPC) Fetal Cardiology Study Group¹⁰, the Berlin study¹¹ and a neonatal series of the Baltimore-Washington Infant Study (BWIS)⁴

		Tore	onto	ISPC:	Berlin:	BWIS*:	
Congenital heart defect	Isolated CHD (% (n))	With ECA, without CA (% (n))	With ECA, with CA (% (n))	Without ECA, with CA (% (n))	With ECA	With ECA without [with] CA (%)	With ECA, without CA (%)
AVSD	20.5 (8)	15.4 (6)	27.7 (10)	38.5 (15)	13.8 [47.1]	19.1 [61.9]	24.5
Heterotaxy	55.8 (24)	44.2 (19)	0	0	NA	NA	NA
Single ventricle	61.1 (11)	38.9 (7)	0	0	17.8 [6.7]	0	NA
HLHS	62.8 (49)	26.3 (21)	3.9 (3)	6.4 (5)	10.9 [4.2]	28.6 [9.5]	9.1
Tricuspid atresia	60 (12)	30 (6)	10 (2)	0	34.3 [8.6]	50 [0]	9.1
Tetralogy of Fallot	42.9 (15)	26.8 (9)	24.4 (8)	8.6 (3)	25 [26.7]	25 [50]	22.5
DORV	41.7 (10)	25 (6)	33.3 (8)	0	19.3 [45.2]	40 [33.3]	28.0
Truncus arteriosus	18.2 (2)	18.2 (2)	36.4 (4)	27.3 (3)	21.4 [28.6]	50 [25]	39.6
D-TGA	83.3 (10)	16.7 (2)	0	0	25.6 [2.6]	20 [0]	7.8
L-TGA	100 (9)	0	0	0	5.6 [0]	NA	NA
TVD	70.6 (12)	17.6 (3)	5.9 (1)	5.9 (1)	6.25 [6.25]	NA	16
Coarctation of the aorta	44 (11)	20.0 (5)	20.0 (5)	16 (4)	12.5 [20.8]	57.1 [42.9]	3.5
Aortic stenosis	83.3 (10)	7.7 (1)	7.7 (1)	0	13 [17.4]	0 [20]	9.0
PS/PA with IVS	70.0 (21)	13.3 (4)	6.7 (2)	10 (3)	25.9 [3.7]	0 [0]	6.8
APVC	100 (3)	0	0	0	NA	NA	21.0
Aortopulmonary window	100 (1)	0	0	0	NA	NA	0
Vascular ring	0	0	100 (2)	0	NA	NA	NA
Total	55 (208)	24.1 (91)	13 (46)	9 (34)	19.1 [19.6]	65.9	13.5

Impact prénatal des malformations Total n= 2036 TOP n= 738 (39%)

Table 3Effect of extracardiac anomalies and ventricular physiology on parental choice of termination of pregnancy or
compassionate care.

	TOP + CC ^a	Live births with active	Univ	ariate analysis ^t)	Multivariable analysis ^c		
		care ^a	OR	95% CI	Р	OR	95% CI	Р
ECMs ^d	143 (16.7)	96 (8.1)	2.3	(1.7–3)	< 0.001	_	_	_
CAs ^d	150 (17.5)	50 (4.2)	4.8	(3.4–6.7)	< 0.001	11.7	(8–17)	< 0.001
ECMs without CA ^d	122 (14.2)	56 (4.7)	3.3	(2.4–4.6)	< 0.001	7	(4.7–10.5)	< 0.001
Univentricular physiology ^e	470 (58.4)	154 (15.0)	8.4	(6.8–10.5)	< 0.001	13.2	(10.3–16.9)	< 0.001

CA: cytogenetic anomaly; CC: compassionate care; CI: confidence interval; ECM: extracardiac malformation; OR: odds ratio; TOP: termination of pregnancy.

^a Data are expressed as number (%).

^b χ^2 test.

^c Logistic binary regression.

^d Known before birth.

^e Excluding non-structural congenital heart disease.

Augmentation significative du taux d'IMG si cardiopathie congénitale associée à une malformation extracardiaque et/ou anomalie chromosomique

Bensemlali et al. 2016 ACVD

Impact postnatal des anomalies extracardiaques

- Complique la prise en charge postnatale
- Nécessité d'une hiérarchisation des interventions: omphalocèle, hernie, sténose duodénale versus intervention cardiaque néonatale
- Augmente la morbi-mortilité à court et long terme

Exemple Fallot et anomalie extracardiaque:

- Taux de mortalité à 1 an
- 16% T4F et une autre malformation
- 19% si deux malformations
- 39% si ≥3 malformations
- Anomalie des yeux: OR 2.83 (95% CI 1.08-7.32)
- Anomalie digestive: OR 4.43 (95%CI, 1.57, 12.45),

Jernigan et al. 2017

Impact dans des cardiopathies complexes

Exemple hétérotaxie: Association d'une cardiopathie complexe (VDDI-CAVc) souvent non réparable avec

- Anomalies du situs abdominal
- Malrotation intestinale, Volvulus
- Atrésie de l'œsophage
- Déficit immunitaire
- Anomalies cérébrales

Bonne performance du diagnostic prénatal pour la cardiopathie mais sensitivité moindre pour les anomalies extracardiaques

Wang et al. 2017 BMC

Hétérotaxie: Problème particulier

Anomalies extracardiaques: 15-60 % selon les études

Gotschalk et al. 2016, Escobar-Diaz et al. 2014, Song et al. 2009

- Diagnostic prénatal très difficile pour certaines anomalies:
 - Malrotation 14.2% → screening néonatal +++
 - Atrésie biliaire 8,0%

- → surveillance selles néonatale ++ Buca DIP et al. Meta-Analysis 2018
- Mortalité postnatale majoritairement due à la malformation cardiaque mais 15% due aux anomalies extracardiaques souvent non vues avant la naissance

Gottschalk 2016

Outcome of prenatally diagnosed fetal heterotaxy: systematic review and meta-analysis

N = 647 foetus, 16 études

D. I. P. BUCA¹, A. KHALIL², G. RIZZO³, A. FAMILIARI⁴, S. DI GIOVANNI¹, M. LIBERATI¹, D. MURGANO¹, A. RICCIARDULLI¹, F. FANFANI¹, G. SCAMBIA⁴ and F. D'ANTONIO^{5,6}

Table 6 Pooled proportions (PP) for prevalence of abnormal perinatal outcome in fetuses diagnosed prenatally with left (LAI) or right (RAI) atrial isomerism

			LAI	LAI			RAI			
Perinatal	Studies	Fetuses	PP (93% CI)	I ²	Studies	Fetuses		95% CI)	I ²	
outcome	(n)	(n/N)	(%)	(%)	(n)	(n/N)		(%)	(%)	
Termination of pregnancy	15	99/380	24.79 (14.9–36.2)	76.2	13	77/238	4.32	22.6–45.3)	63.3	
Intrauterine death	15	25/380	6.73 (3.9–10.2)	19.4	13	9/238		(2.1–7.3)	1.7	
Neonatal death	14	34/668	11.12 (6.1–17.3)	50.1	11	36/232		(8.7–28.7)	69.4	
Late death	13	21/365	6.24 (4 0-8.9)	0	11	37/232	14.69	(7.9–23.1)	54.3	

Table 7 Pooled proportions (PP) for prevalence of abnormal surgical outcome in fetuses diagnosed prenatally with left (LAI) or right (RAI) atrial isomerism

			LAI	RAI				
Surgical outcome	Studies (n)	Fetuses (n/N)	PP (95% CI) (%)	I ² (%)	Studies (n)	Fetuses (n/N)	PP (95% CI) (%)	I ² (%)
Need for surgery	3	82/109	73.43 (44.4–94.3)	82.9	3	41/62	70.06 (20.7–99.6)	93.1
Biventricular repair	2	64/80	78.16 (64.3-89.4)	34.6	2	3/39	7.42 (0.5-33.7)	79.3
Univentricular repair	2	13/80	17.03 (9.7-25.9)	0	2	36/39	92.60 (66.3-99.5)	79.3
Deaths during or after surgery	3	11/82	26.80 (4.6–58.7)	78.3	3	11/41	27.81 15.5-42.1)	27.0

Cardiopathie et syndrome/séquence

- La cardiopathie est un problème parmi autre..
- Souvent il s'agit de cardiopathies facilement réparable: Fallot, coarctation, CIV, CIA
- Le pronostic global est souvent extracardiaque
- La prise en charge pré- et postnatale est toujours pluridisciplinaire
- VACTERL, CHARGE, Goldenhar

Particularités du conseil en cas de fœtus polymalformé

- Une prise en charge pluri-disciplinaire prénatal s'impose toujours
- Entretiens avec plusieurs spécialistes: cardiopédiatre, chirurgien pédiatrique, généticien etc.
- Le pronostic vital ne dépend souvent pas du cœur

Le conseil prénatal doit être adapté à la situation globale

- Morbi-mortalité accrue
- Multiplication du risque des complications à court et à moyen terme
- S'ajoute les problèmes éventuels supplémentaires comme
 - Retard de croissance intra-utérin –hypotrophie
 - Prématurité et ses complications
 - Grossesse gémellaire avec gestion parallèle d'un jumeau sain

CARDIOPATHIES ET ANOMALIES GÉNÉTIQUES PRENATALES

Orientation diagnostique Répartition des anomalies chromosomiques Trisomie 13,18,21 Di George et cardiopathies conotroncales CHARGE Orientation de la recherche génétique en fonction de la cardiopathie en prénatal

- Canal atrioventriculaire
 - \rightarrow trisomie 21
- Cardiopathies conotruncales
 - \rightarrow recherche de la microdeletion 22q11
- Transposition simple des gros vaisseaux:
 - → pas d'amniocentèse
- Asymétrie ventriculo-artérielle marquée chez un fœtus du sexe feminin
 - \rightarrow syndrome de Turner

Anomalies chromosomiques et cardiopathies fœtales : 548 cardiopathies-18.5%

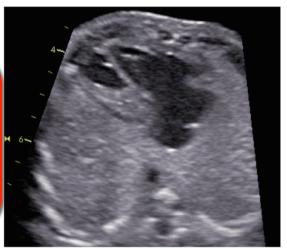
 Canaux atrioventriculaire 28 T21; 3 T18; 1 XXX 	32/68	47%
 Anomalies conotroncales 20 del22q11; 1 T21; 2 anomalies de structure 	23/91	25%
 Malpositions vasculaires 	7/38	18%
 Communications interventriculaire 9 trisomies, 2 del22q11, 1 del5 	12/74	16%
 Obstacles gauche à SIV intact 6 XO; 3 T18; 3 anomalies de structure 	12/130	9.2%
 VU et atrésie tricuspide 2 T18 	2/24	8%
 Transposition des gros vaisseaux 	0	0%
 Obstacles droits à SIV intact 	0	0%

Cardiopathies sélectionnées et anomalies génétique

Association avec une anomalie chromosomique

• TGV	0-2%
 Fallot 	14%
 HypoVG 	13%
 Coarctation 	4%

Anomalie génétique dépistée en prénatal la plus fréquente: la trisomie 21


Prévalence totale: 33/10.000

Dépistage prénatale via

- Anomalie des marqueurs sériques du 1^{er} trimestre
- Hyperclarté nuchale
- Découverte d'une cardiopathie, le plus souvent un canal atrioventriculaire complet
- Découverte d'une autre anomalie morphologique: absence/ hypoplasie des os propres du nez, retard de croissance intrauterin, particularités des mains/pieds

NB: 10% des cardiopathies congénitales sont associés à la Trisomie 21

50% des trisomiques 21 ont une cardiopathie

Diagnostic prénatal de T21 et IMG

85% dépistés	Non dépistés	Dépistés
15% non dépistés	(75)	(413)
	%	%
Premier examen anomal		
Echographie 1er trimestre	5.3	18.6
Marqueurs sériques 10-13SA	14.7	40.9
Marqueurs sériques <u>></u> 14SA	12.0	10.2
Nuque épaisse	8.0	20.6
Echographie 2ème trimestre	18.7	7.8
Echographie 3ème trimestre	5.3	1.4
Prélèvement fœtal systématique*	0.0	0.5
Pas de signe d'appel	36.0	0.0
* pour motif maternel ou antécédent de	malformé	

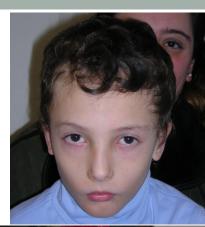
	1981-84	1985-87	1988-90	1991-93	1994-96	1997-99	2000-02	2003-05	2006-08	2009-11	2012-14
%DPN	29.8	43.4	56.9	68.2	74.3	83.2	87.5	89.1	87.6	85.8	84.6
% IMG	24.5	40.4	50.9	62.1	71.4	78.8	80.5	85.1	80.7	80.6	79.6

Naissances enregistrées à Paris de femmes domiciliées à Paris ou dans la Petite Couronne

Cardiopathies conotroncales en prénatal

Groupe anatomiquement hétérogène avec une base embryologique commune

Caractéristique: anomalies de la voie d'éjection


- Fallot, APSO, TAC, Agénésie des valves, CIV de la voie d'éjection, CIV + aorte à cheval sans obstacle pulmonaire
 MAIS aussi
- Anomalies des arcs (double arc, crosse à droite isolée)
- Association fréquente avec le syndrome de Di George 10-30% selon les études

Syndrome de Di George

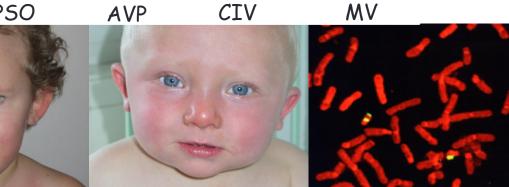
-Retard du développement, trouble du langage -Déficit immunitaire

-Microdélétion du chromosome 22q1.1

- Gène Tbx1

IAA

APSO



AVP

MV

Distribution des cardiopathies conotroncales chez les nouveau-nés ayant délétion 22q1.1

Interruption de la crosse	26%
Tétralogie de Fallot	20.7%
CIV	15.5%
Tronc artériel commun	11.4%
APSO	10.8%
Agénésie VP	1.5%

Autres

13.9%

Mais jamais de TGV...

Cardiopathie conotroncale fait aussi penser à

Association CHARGE

22%

21%

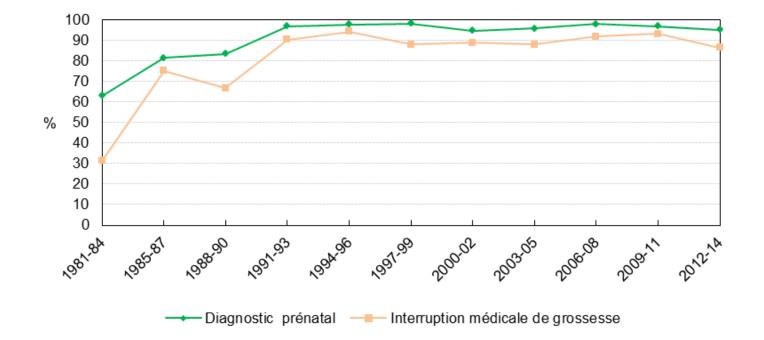
Conotruncal defect
 Atrioventricular set

Aortic Arch Anom
Left-right shunt

Abnormal intracan blood flow

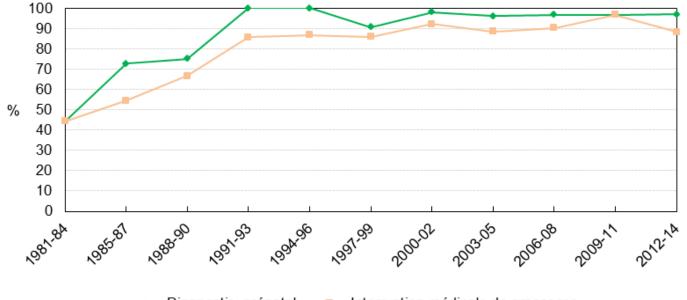
Ebstein anomaly

 Discordant Ventricule Arterial Connections +VSD
 Normal Heart


- Colobome, Heart defect, Atrésie des choanes, Retard de développement, Génitales anomalies, Ear anomalies
 - Agénésie des canaux semi-circulaires
 - Hypoplasie des lobes olfactifs

Trisomie 13 et 18

- Dysplasie polyvalvulaire
- CIV, CIA, PCA, CAV
- T4F
- Cardiopathie obstructive gauche
- Malposition vasculaire
- Ventricule unique


Diagnostic prénatal T18 et IMG

	1981-84	1985-87	1988-90	1991-93	1994-96	1997-99	2000-02	2003-05	2006-08	2009-11	2012-14
)PN	63.0	81.3	83.3	96.8	97.6	98.0	94.7	95.8	97.8	96.8	95.0
MG	31.3	75.0	66.7	90.3	94.1	87.9	88.7	88.0	91.8	93.1	86.3

ances enregistrées à Paris de femmes domiciliées à Paris ou dans la Petite Couronne

Diagnostic prénatal T13 et IMG

Diagnostic prénatal — Interruption médicale de grossesse

	1981-84	1985-87	1988-90	1991-93	1994-96	1997-99	2000-02	2003-05	2006-08	2009-11	2012-14
PN	44.4	72.7	75.0	100.0	100.0	90.7	98.1	96.2	96.8	96.7	97.1
٨G	44.4	54.5	66.7	85.7	86.7	86.0	92.3	88.5	90.3	96.7	88.4

ances enregistrées à Paris de femmes domiciliées à Paris ou dans la Petite Couronne

Conclusion

- Les cardiopathies congénitales sont souvent associées aux anomalies extracardiaques et/ou génétiques
- Les associations fréquentes doivent être connues par le cardiopédiatre, l'obstétricien et le néonatalogue pour orienter le bilan prénatal et la PEC postnatale
- La survie des enfants avec CC et malformations extracardiaques est moindre qu'en cas de CC isolée
- Le diagnostic d'une malformation associée et/ou d'une anomalie génétique augmente le taux d'IMG