

Hypertensions pulmonaires de l'enfant

Unité médico-chirurgicale de Cardiologie Congénitale et Pédiatrique Hôpital Universitaire Necker Enfants malades – APHP, Université Paris Descartes, Sorbonne Paris Cité IcarP Cardiology, Institut Hospitalo-Universitaire IMAGINE

Damien Bonnet

Centre de Référence Maladies Rares Malformations Cardiaques Congénitales Complexes-M3C

> **Centre de Référence Maladies Rares** Maladies Cardiaques Héréditaires- CARDIOGEN

Cardiagues

Héréditaires

for rare or low prevalence complex diseases

③ Network Respiratory Diseases (ERN-LUNG)

Reference Network

complex diseases

Network Heart Diseases (ERN GUARD-HEART)

NICE February 27-28 TASK FORCE 12 Pediatrics

ROLF M. F. BERGER MD, Chair

FENSION

ERIKA ROSENZWEIG MD, Chair New York, NY USA Groningen, THE NETHERLANDS

New guidelines since Nice 2013

AHA/ATS Guideline

Pediatric Pulmonary Hypertension Guidelines From the American Heart Association and American Thoracic Society

Steven H. Abman, MD, Co-Chair; Georg Hansmann, MD, PhD, FAHA, Co-Chair;
Stephen L. Archer, MD, FAHA, Co-Chair; D. Dunbar Ivy, MD, FAHA; Ian Adatia, MD;
Wendy K. Chung, MD, PhD; Brian D. Hanna, MD; Erika B. Rosenzweig, MD;
J. Usha Raj, MD; David Cornfield, MD; Kurt R. Stenmark, MD;
Robin Steinhorn, MD, FAHA; Bernard Thébaud, MD, PhD; Jeffrey R. Fineman, MD;
Titus Kuehne, MD; Jeffrey A. Feinstein, MD; Mark K. Friedberg, MD;
Michael Earing, MD; Robyn J. Barst, MD⁺; Roberta L. Keller, MD; John P. Kinsella, MD;
Mary Mullen, MD, PhD; Robin Deterding, MD; Thomas Kulik, MD;
George Mallory, MD; Tilman Humpl, MD; David L. Wessel, MD; on behalf of the American Heart
Association Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation; Council on
Clinical Cardiology; Council on Cardiovascular Disease in the Young; Council on Cardiovascular
Radiology and Intervention; Council on Cardiovascular Surgery and Anesthesia; and the American
Thoracic Society

ORIGINAL ARTICLE

Executive summary. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK

Georg Hansmann, (Chair)¹ Christian Apitz, (Co-Chair)² Hashim Abdul-Khaliq,³ Tero-Pekka Alastalo,^{4,5} Phillip Beerbaum,¹ Damien Bonnet,⁶ Karl-Otto Dubowy,⁷ Matthias Gorenflo,⁸ Alfred Hager,⁹ Anne Hilgendorff,¹⁰ Michael Kaestner,² Martin Koestenberger,¹¹ Juha W Koskenvuo,^{4,5} Rainer Kozlik-Feldmann,¹² Titus Kuehne,¹³ Astrid E Lammers,¹⁴ Heiner Latus,¹⁵ Ina Michel-Behnke,¹⁶ Oliver Miera,¹⁷ Shahin Moledina,¹⁸ Vivek Muthurangu,¹⁹ Joseph Pattathu,⁸ Dietmar Schranz,¹⁵ Gregor Warnecke,^{20,21} Peter Zartner²²

> *Circulation.* 2015;132:2037-2099 *Heart* 2016;102:ii86-ii100.

Specific guidelines for neonatal pulmonary hypertension

MEDICAL PROGRESS

www.jpeds.com • THE JOURNAL OF PEDIATRICS

Evaluation and Management of Pulmonary Hypertension in Children with **Bronchopulmonary Dysplasia**

Usha Krishnan, MD^{1,*}, Jeffrey A. Feinstein, MD^{2,*}, Ian Adatia, MBChB³, Eric D. Austin, MD⁴, Mary P. Mullen, MD, PhD⁵, Rachel K. Hopper, MD⁶, Brian Hanna, MD, PhD⁶, Lew Romer, MD⁷, Roberta L. Keller, MD⁸, Jeffrey Fineman, MD⁹, Robin Steinhorn, MD¹⁰, John P. Kinsella, MD¹¹, D. Dunbar Ivy, MD¹², Erika Berman Rosenzweig, MD¹, Usha Raj, MD¹³, Tilman Humpl, MD¹⁴, and Steven H. Abman, MD¹⁵, for the Pediatric Pulmonary Hypertension Network (PPHNet)[†]

COMMENTARY

www.jpeds.com • THE JOURNAL OF PEDIATRICS

Recommendations for the Use of Inhaled Nitric Oxide Therapy in Premature Newborns with Severe Pulmonary Hypertension

John P. Kinsella, MD¹, Robin H. Steinhorn, MD², Usha S. Krishnan, MD³, Jeffrey A. Feinstein, MD⁴, Ian Adatia, MBChB⁵, Eric D. Austin, MD⁶, Erika B. Rosenzweig, MD³, Allen D. Everett, MD⁷, Jeffrey R. Fineman, MD⁸, Brian D. Hanna, MD, PhD⁹, Rachel K. Hopper, MD⁹, Tilman Humpl, MD¹⁰, D. Dunbar Ivy, MD¹¹, Roberta L. Keller, MD¹², Mary P. Mullen, MD, PhD¹³, J. Usha Raj, MD¹⁴, David L. Wessel, MD¹⁵, and Steven H. Abman, MD¹⁶

Natural History of IPAH: NIH Registry Median survival: 2.8 years (n=194) Pediatric median survival: 0.8 years (n=16)

1. Houde C, *et al. Br Heart J* 1993;70:461-8. 2. Barst, RJ, *et al. Circulation* 1999; 99:1197-208.

Recent landmarks in pediatric PH

- Extension of drug approval in children (n=1) !
- Expansion of use of interventional-surgical approaches for end-stage PAH in children

- Genetic discoveries relevant to pediatric practice
- New insights from pediatric specific registry data

Definition of pediatric PH/PAH

- months of age with two ventricle anatomy.
- mmHg.
- Age is a pending problem:
 - Definition of PH in children less than 3 months of age
 - lung disease

 A mean pulmonary arterial pressure of >25 mmHg with a capillary wedge pressure of <15mmHg and a PVRi >3WU*m2 in children > 3

Limited data to extend the definition to children with mean PAP 21-24

- No RHC measure of pulmonary pressure in neonates with PPHN or PH associated with developmental

Definition of vasoreactivity in children

Douwes M et al. JACC 2016

Definition of vasoreactivity in children

* P<0.01 * P<0.001

Douwes M et al. JACC 2016

Heritable PAH in pediatrics

- EIF2AK4, TBX4, SOX17
- SOX17 role in PAH and cardiac development

Known mutations: BMPR2, ALK1, ENG, CAV1, KCNK3,

 TBX4 – described potential role in pediatric PAH and small patella syndrome and lung development¹

1-Kerstjens-Frederikse WS, J Clin Genet 2013 2-Levy M, ERJ, 2016

Heritable PAH in pediatrics

- Genetic screening for PAH genes mutations should be performed in children
 in expert centers with a genetic counseling group in all children diagnosed with IPAH and HPAH
- Genetic screening for PAH/lung-cardiac development should be done in APAH-CHD ?
 TBX4 and SOX17 genes mutations
- Genetic screening for neonatal pulmonary hypertension is potentially recommended

 FOXF1 in alveolo-capillary dysplasia
 TDX4 is presented receivatory distance and DDUN.
 - TBX4 in neonatal respiratory distress and PPHN
- Sharing exception may hold key to future understanding of PH in children

Gräf S et al. Nature Communication 2017

Identification of PAH genes mutations in a pediatric population Results

- No mutations in children with group 3 and type 4 APAH-CHD.
- 8 mutations were found in 36 children with iPAH (22%) \bullet
 - 3 in *BMPR2*,
 - 3 in *ALK1*,
 - 2 in *TBX4*.
 - No mutations were identified in ENG, SMAD9 or KCNK3.
- 4 mutations were found in the 8 fPAH families (50%)
 - -2 in BMPR2, 1 in ALK1, 1 in TBX4.
- **CT** features of **PVOD**.

- only one sibling of an index case with a TBX4 mutation was alive with PAH, and had the same mutation. In the three remaining families, the first-degree relatives who had PAH were all dead at inclusion of the index case into our study with no material available for genetic testing. • 2 mutation in *EIF2AK4* in the two patients with clinical, hemodynamic and

Lévy M et al. ERJ 2016

Low prevalence of known genes for PAH PAH genes variants and risk of PVD

Gender and PAH

- Genetic predisposition in CHD
- Down syndrome:
- -comorbid condition in pediatric PAH 13%¹
- •Noonan syndrome

•BMPR2 mutations in CHD²

24 mutations were identified, accounting for 22 of the 294 patients with CHD-PVD (7.5%) and 2 of the 161 CHD patients without PVD (1.2%, P=0.004)

No PAH + mutation

TBX4 c.781C>T, p.Arg261*

Classification of pediatric PH

3 Main topics

1-Neonatal pulmonary hypertension

2-Developmental lung disorders and PH

3-Congenital heart diseases and PH/PAH

Pathogenesis of PPHN

PRENATAL FACTORS

- Maternal NSAID, SSRI use;
- Premature closure of the DA
- C-section delivery
- Post-term (> 41 weeks)
- Large for gestational age
- Abnormal placenta
- Altered lung development
- Cardiovascular abnormaliities

Injury to the Developing Lung Circulation

Impaired Vasoreactivity

Persistent Pulmonary Hypertension of the Newborn - Failure to decrease PVR at birth - Extra-pulmonary shunting across DA, PFO - Severe hypoxemia, Respiratory Failure

POSTNATAL FACTORS

•	Hyperoxia/oxidative stress	
	Vantilator Induand Injury	

- Ventilator Induced Injury
- Asphyxia
- Inflammation/Infection

Decreased Angiogenesis Altered Vascular Structure

Pulmonary Vascular Disease in Developmental Lung DisordersAlveolar Capillary DysplasiaCongenital Diaphragmatic Hernia

Pulmonary Interstitial Glycogenosis

Surfactant Protein B Deficiency

(Courtesy Csaba Galambos)

PH in Down syndrome/trisomy 21 is a developmental lung disorder

- PPHN more frequent in Down syndrome
- APAH-CHD has an earlier onset in DS

Bush D et al. J Pediatr 2017

Multifactorial pulmonary hypertension in children

Post-capillary PH

Systemic supply to the lung

Scimitar syndrome

Pulmonary vascular disease /maladaptation

Left-to right shunt /CHD

Multifactorial pulmonary hypertension in scimitar syndrome

Treatment of pediatric PAH/PH and current challenges

AVT responders should receive Calcium channel blockers 1.

Douwes M et al. JACC 2016

Low and high risk pediatric patients with PAH

LOWER RISK	DETERMINANTS OF RISK	HIGHER RISK
No No > 350 meters I,II	Clinical evidence of RV failure Progression of Symptoms 6MWT (>7 yrs old) Growth WHO Functional Class	Yes Yes < 350 meters Failure to thrive III,IV Significantly elevated
	Echocardiography	Rising level RA / RV Enlargement Reduced LV size Increased RV/LV Ratio Reduced TAPSE Low RV FAC Pericardial Effusion
Systemic CI > 3.0 L/min/m ² Systemic venous saturation >65% + Acute Vasoreactivity	Hemodynamics	Systemic CI < 2.5 L/min/m ² RAP > 10mmHg PVRI > 20 WU*m ² Systemic venous saturation < 60% PACi <0.85

Limited evidence in RCT for this algorithm but convincing registries data

Zijlstra WMH, et al. JACC 2014

Lung transplantation in children (Lung Transplantations: january 1990 – june 2012)

Goldstein BS et al. J Heart Lung Transplant 2011

Potts shunt in pediatric PAH

- Good long term responders
- Still high risk procedure
- Need to further define indications/ contraindications
- Registry data from PePH association

Predictor of outcome

1-is measured at baseline 2-its initial value predicts « hard » outcomes (death, transplantation)

Therapeutic target

- outcome

- 2-is in the pathway of the disease 3-treatment induces changes in
- the surrogate value
- 4-changes in the surrogate value
- modifies outcome

What is the path to demonstrate efficacy of a new **compound in pediatric PAH ?**

1-baseline values correlate with

Therapeutic trial endpoint

1-Measure of how the patient behaves, feels, survives 2-Measuring the endpoint should do no/limited harm

Treatment Goals in Pediatric PAH TAPSE NT-pro-BNP

WHO-FC

- WHO-FC I–III at both baseline and after treatment initiation
- -O-WHO-FC IV at baseline, improved to I-III after treatment initiation
- -▼-WHO-FC I-III at baseline, deteriorated to IV after treatment initiation
- WHO-FC IV at both baseline and after treatment initiation

- NT-proBNP >1200 ng·L⁻¹ at both baseline and after treatment initiation

- deteriorated to <1200 ng·L⁻¹ treatment initiation

- TAPSE ≥12 mm at both baseline and after treatment initiation
- -O- TAPSE <12 mm at baseline, improved to >12 mm after treatment intiation
- -▼ TAPSE ≥ 12 mm at baseline, deteriorated to < 12</p> mm after treatment initiation
- TAPSE <12 at both baseline and after treatment</p> initiation

Ploegstra MJ et al. Eur Resp J 2015

Clinical worsening as composite study endpoint in pediatric PAH

Event-free survival of 6 endpoint combinations Only the first occurrence of endpoint components are incorporated as events

- **Component 1** = death
- **Component 2** = lung-transplantation
- **Component 3** = non-elective PAH-related hospitalization
- **Component 4** = initiation of intravenous prostanoid
- **Component 5A** = functional deterioration (defined as worsening of WHO-FC only)
- **Component 5AB** = functional deterioration (defined as worsening of WHO FC
- and/or \geq 15 % decrease in 6-MWD)
- **CW-endpoint** = Full composite clinical worsening endpoint consisting of death, lung-transplantation, non-elective PAH related hospitalization, initiation of intravenous prostanoids and functional deterioration.

Disease progression composite outcomes and the first occurring events within these outcomes

	Disease progression 1	Disease progression 2 (n	Disease pro
Number of	121	173	17:
Person–years	524.7	396.5	377
Rate (95% CI)	23.1 (19.3, 27.6)	43.6 (37.6, 50.6)	46.3 (40.
	Death (all-cause)	Death (all-cause)	Death (all
	PAH related	PAH related	PAH re
	Lung transplantation	Lung transplantation	Lung trans
	Atrial septostomy	Atrial septostomy	Atrial sep
		WHO FC deterioration ⁺	WHO FC de
		Initiation of i.v. / s.c. prostanoids	Initiation of prosta
		Syncope	Sync
			PAH wor

Association for Paediatric pulmonary hypertension *Increased right heart failure, haemoptysis; †Increase ≥1 WHO FC

Beghetti M, et al. Int J Cardiol 2019

Designing RCT in pediatrics

- Common approach among regulators (requirements for approval)
- Consensus on acceptable clinical endpoints (physicians/regulators)
- Use of targeted PAH therapy that does not have established benefit should not cause lack of equipose
- Extrapolation opportunities: adult PAH -> pediatric PAH
- Novel trial design / analysis: composite with ranked analysis
- Potential clinically meaningful endpoints: TTCW, PROs, Functional Activity measurements (WHO-FC, 6MWD, Accelerometry)
- Potential surrogates : NT-pro-BNP; Not invasive hemodynamics (risk); Imaging biomarkers

Conclusions

- Approval and development of PAH treatment in children : drugs, strategies
- Identification of a genetic profile slightly different from that of adults
- Registry data have grown substantially and inform for future trial design
- Pediatric specific trials are ongoing but new concepts should be developed to succeed
- A growing number of children transition to adult centers and this should be anticipated