

Cœur et sport dans le syndrome de Marfan

Dr Yves Dulac Centre de référence Marfan Hôpital d'Enfants, CHU Toulouse

DIU cardiologie pédiatrique Toulouse 3 Juin 2019

Syndrome de Marfan: revised Ghent nosology (2010)

Absence d' histoire familiale:

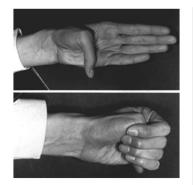
Aorte dilatée et

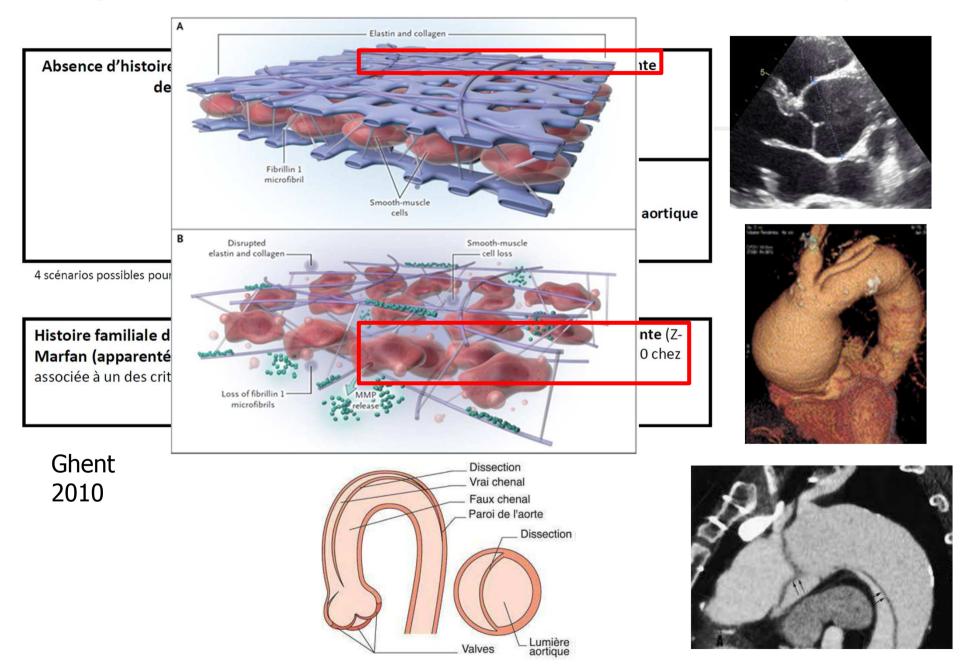
- FBN1 =Marfan
- Luxation cristallin = Marfan
- Score Syst (≥ 7 pts) = Marfan

Présence d'histoire familiale:

- **Aorte dilatée** = Marfan
- Luxation cristallin = Marfan
- Score Syst (≥ 7 pts) = Marfan

- Signe poignet et du pouce= 3 (poignet ou pouce= 1)
- Pectus carinatum = 2 (pectus excavatum /asymétrie thoracique= 1)
- Déformation arrière pied= 2 (pied plat= 1)
- Pneumothorax = 2
- Ectasie durale= 2
- Protrusion acetabulaire=2
- > Segment sup/inf < 0,86 et envergure/taille > 1,05 =
- Scoliose ou cyphose thoraco-lombaire= 1
- Réduction extension du coude= 1
- Signes craniaux faciaux(3/5) = 1 (dolichocéhalie, enophthalmie
 Fentes palpébrales vers le bas, hypoplasie malaire, retrognathie)
- Vergetures= 1
- Myopie > 3 dioptries= 1
- Prolapsus mitral (tous types) = 1


score ≥7 atteinte systémique


Loeys B.L. J Med Genet. 2010

Syndrome de Marfan: atteinte aortique

Syndrome de Loeys Dietz

Système *Craniofacial*

Signes

- Hypertélorisme

- Luette bifide

- Fente palatine

- Craniosténose

Squelettique

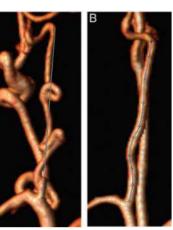
- Pied bot

- Malformation cervicale et/ou instabilité

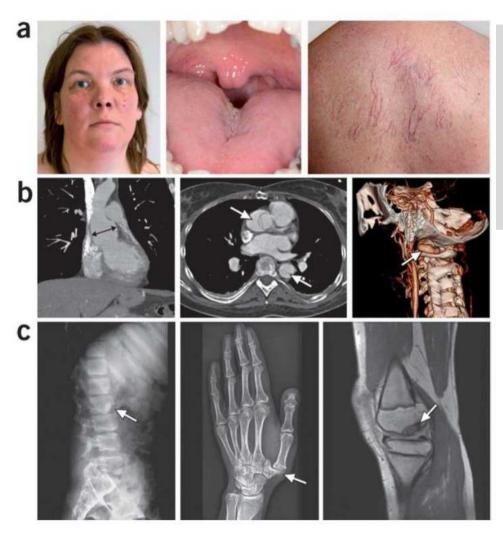
Cutané

- Peau translucide

- Cicatrices dystrophiques

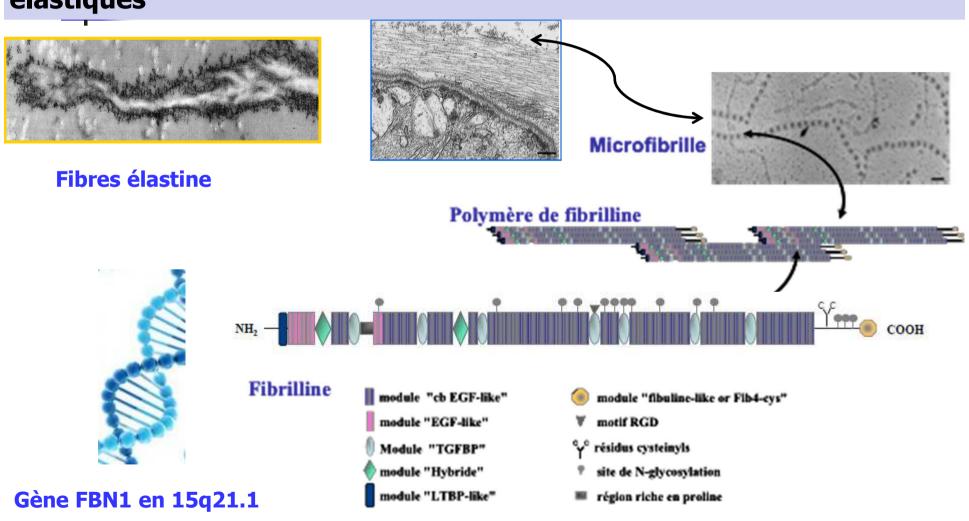


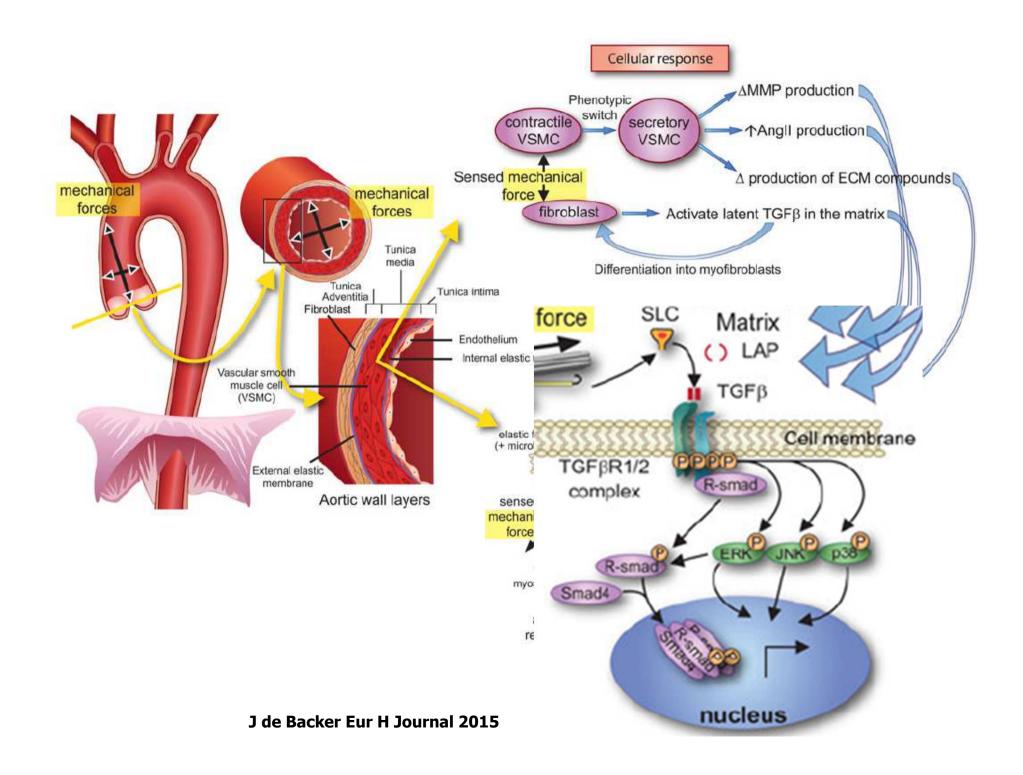
Vasculaire


- Anévrysmes, Tortuosité Aortique

- Tortuosité des vaisseaux du cou

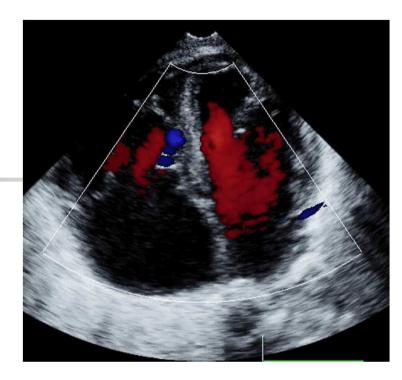
Mutation SMAD3

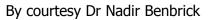


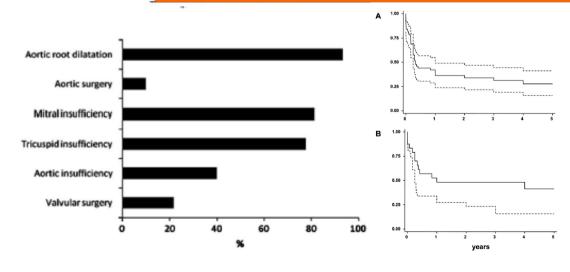

Van De Laar, Nat Genet. 2011

- hypertélorisme
- luette bifide et/ou fente palatine
- anévrysmes aortiques
- ostéoarthrite précoce

La fibrilline 1


Anomalie de la fibrilline (Hollister, NEJM 1990) Constituant majeur des microfibrilles: intégrité homéostasie des tissus élastiques





Syndrome de Marfan de diagnostic néonatal

60 patients , 95% de mutation de novo 63% de décès: 82% < 1 an, 89% < 2 ans (défaillance cardiaque)

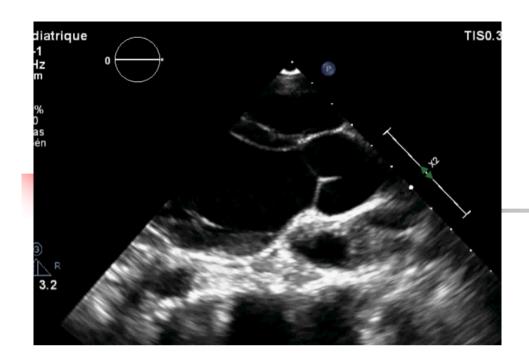
		Participant	s with available follow-up data	1
	All study participants	Died before 1 y	Surviving at 1 y	p
Pectus deformity	27/55 (49%)	11/29 (38%)	14/19 (74%)	0.02*
Dolichostenomelia	20/44 (45%)	08/24 (33%)	10/16 (63%)	0.07*
Arachnodactyly	57/57 (100%)	31/31 (100%)	20/20 (100%)	NA
Scoliosis	17/57 (30%)	05/31 (16%)	11/19 (58%)	0.02*
Flexion contractures	47/54 (87%)	27/30 (90%)	16/19 (84%)	0.67†
Pes planus	11/41 (73%)	04/24 (17%)	07/14 (50%)	0.06†
Facial dysmorphism	50/57 (88%)	26/31 (84%)	18/19 (95%)	0.39†
Joint hypermobility	36/54 (67%)	15/27 (56%)	15/20 (75%)	0.17*
High-arched palate	35/46 (76%)	18/26 (69%)	14/16 (88%)	0.27†
Ectopia lentis	24/52 (46%)	06/25 (24%)	09/21 (43%)	0.17*
Ascending aortic dilatation	56/60 (93%)	28/31 (90%)	16/22 (73%)	0.14†
Valvular insufficiencies	52/60 (87%)	29/31 (94%)	14/22 (64%)	0.01†
Pneumothorax	05/56 (9%)	04/29 (14%)	01/20 (5%)	0.63†
Diaphragmatic herniae	06/55 (11%)	06/28 (21%)	0/21 (0%)	0.03*

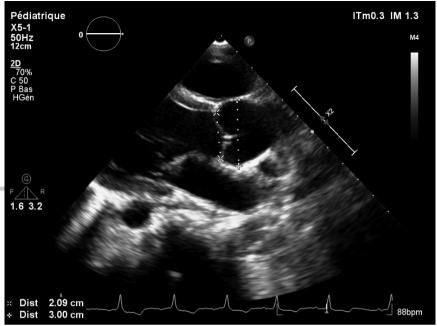
Facteurs de mauvais pronostic:

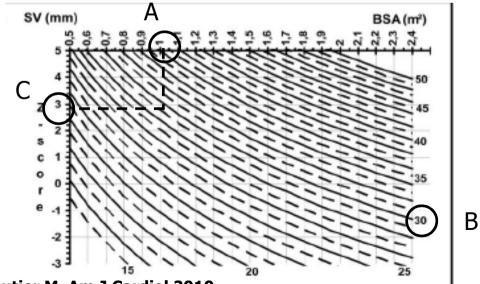
- Insuffisance valvulaire
- Hernie diaphragmatique
- Mutation exons 25-26

Stenheur. Ped Res 2011

Paul 19 ans


- ✓ 10 mois : remplacement aorte ascendante
- 21 mois : valvuloplastie mitrale et tricuspide
- ✓ 10 ans : chirurgie de scoliose
- 12 ans : remplacement valvulaire aortique et mitrai : Saint Jude mitral 29 mm, Saint Jude aortique 23 mm
- 16 ans : Prothèse de hanche. Hématome sous dural
- 19 ans: dissection aorte transverse et descendante: décès

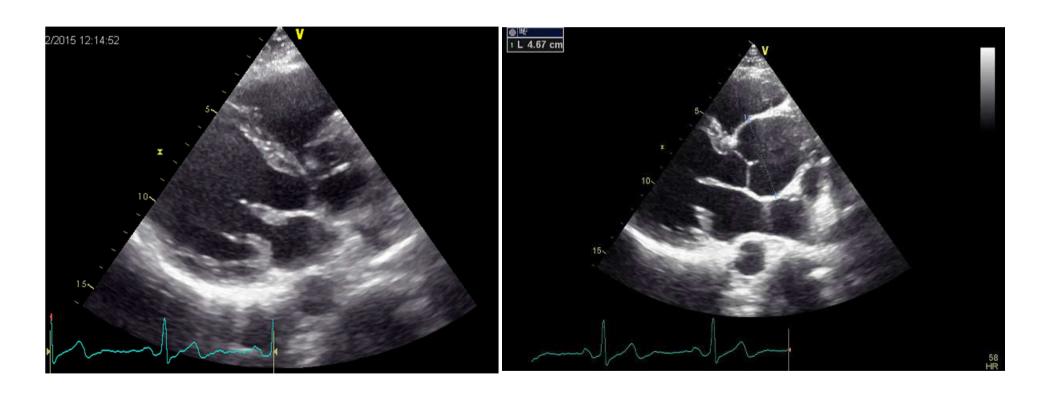

Cas clinique 2


Elsa, 6 ans

- Souffle systolique
- Prolapsus valvulaire mitral familial
- ✓ Z-score taille +3
- Signe du poignet

Gautier M. Am J Cardiol 2010 Goldstein SA. J Am Soc Echocardiogr 2015;28:119-82

Aortic Root Z-Scores (Gautier et al., 2010)


Z-scores of the aortic root at the level of the aortic annulus, sinuses of Valsalva, sinotubular junction, and ascending aorta. Measurements are from the parasternal long axis: aortic annulus measured in *systole* at the hinge points of the leaflets; sinuses, sinotubular junction and ascending aorta are measured in *diastole* using *leading-edge to leading-edge technique*. Data is from 353 normal children as reported by investigators at Hôpital Bichat, Paris, France.

Height (cm):	138			***
Weight (kg):	28,5			
BSA formula:	DuBois ▼ 1.	.06 M ²		
Gender:	Female -			
	T CINGO			
Site	Measured (mm)	Mean	ULN 2	Z-Score
Site	Measured (mm)	Mean 16.06	ULN 2	2-Score 2.63
Site	Measured (mm) 20,9			nanamana anamana
Site ortic Annulus:	Measured (mm) 20,9	16.06	19.62	2.63
Site Aortic Annulus: Sinuses:	Measured (mm) 20,9 30 23,1	16.06 22.79	19.62 27.07	2.63 3.05

Enquête familiale

Mère d'Elsa: 31 ans, « prolapsus mitral familial»,

Taille: 1,80 m, scoliose 20°, 24 SA de grossesse

- Mutation FBN1+

Manifestations cardiaques des enfants avec SM

Table 1 Cardiac manifestations of pediatric patients with Marfan syndrome

	Cardiac manifestations $\%$ (n) (n = 82)
Aortic aneurysm	56.09 (46)
Aortic regurgitation	9.76 (8)
Aortic dissection	0 (0)
Dilation of the pulmonary artery	2 1.95 (1 8)
Mitral valve prolapse	31.70 (26)
Mitral regurgitation	21.95 (18)
Calcification of the mitral annulus	0 (0)
Tricuspid valve prolapse	17.07 (14)
Tricuspid regurgitation	36.59 (30)

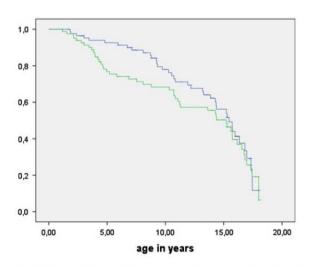


Fig. 1 Kaplan-Meier analysis of mitral valve prolapse (green) and mitral valve regurgitation (blue) in children with Marfan syndrome

GC Mueller. Pediatr Cardiol 2013

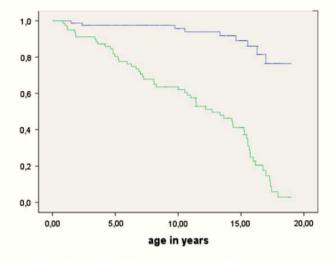


Fig. 3 Kaplan-Meier analysis of aortic root dilation (green) and aortic regurgitation (blue) in children with Marfan syndrone

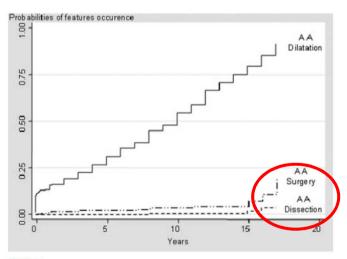
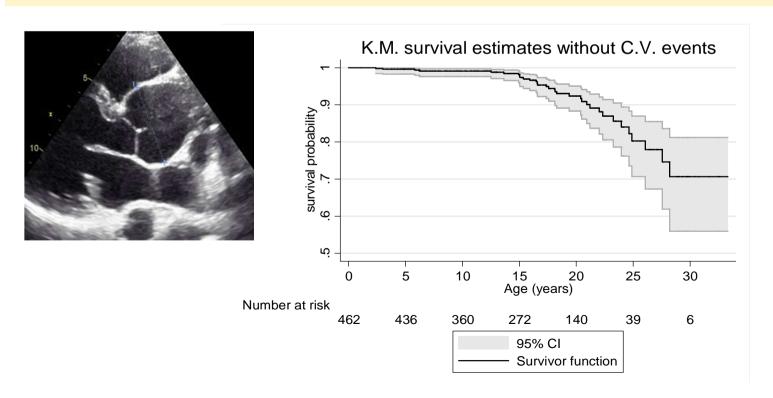


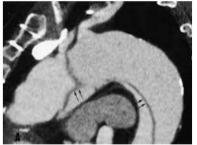
FIGURE 2 Kaplan-Meier analysis of the probability of diagnosing an aortic event in the pediatric population with MFS (N=320). The probabilities of ascending aortic surgery and ascending aortic dissection were determined in the overall population of child probands. AA indicates ascending aortic.

L Faivre. Pediatrics 2009

Evénements aortiques chez l'enfant avec SM

Registre français prospectif multicentrique

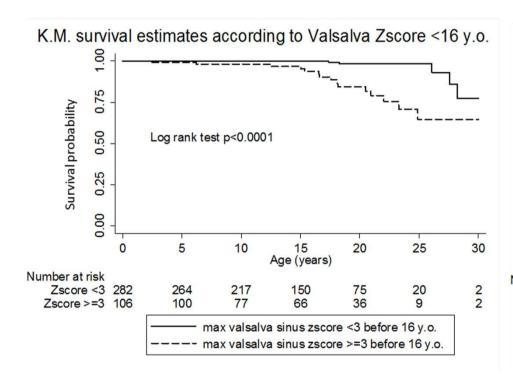

- **462** enfants (1993-2013)
- **Garçons**: 52%
- Age médian au diagnostic: 10,3 (5,6-14) ans
- Mutation génétique: 74,5%
- Dilatation aortique: 77,4%
 - ✓ Z score sinus Valsalva > 3: 37%
 - ✓ Z score sinus Valsalva > 3 avant 16 ans: 27,3%
- Bétabloquants: 75%

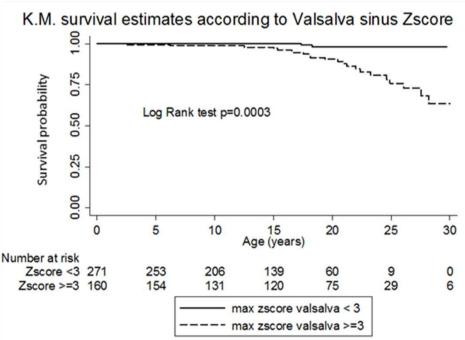

Evénements aortiques chez l'enfant avec SM

Evénements cardiovasculaires < 19 ans : 19/225: 8,4% (5,2-12,9)

- Dissection: 2 (15.0 15.9)
- Décès: 3 (3,4 14,3 18,2 ans)
- Chirurgie aortique prophylactique: **15** (2,4-5,8-7-13,6-14,9-15,6 a)

Evénements cardiovasculaires < 15 ans : 7/288: 2,4% (1.0-4,9)





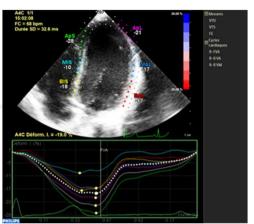
Marqueurs pronostic du risque d'événement aortique chez l'enfant avec SM

z score de la racine aortique = bon marqueur du risque d'événement aortique

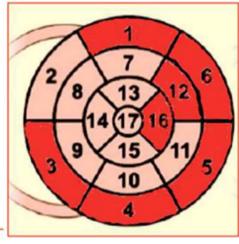
The importance of genotype-phenotype correlation in the clinical management of Marfan syndrome

Víctor Manuel Becerra-Muñoz¹, Juan José Gómez-Doblas¹, Carlos Porras-Martín¹, Miguel Such-Martínez¹, María Generosa Crespo-Leiro², Roberto Barriales-Villa², Eduardo de Teresa-Galván¹, Manuel Jiménez-Navarro^{1*} and Fernando Cabrera-Bueno¹

Table 5 Type of FBN-1 variant and phenotype in patients with diagnosis of MFS


	Missense $(n = 44)$	Truncating $(n = 35)$	р
Mitral valve prolapse n (%)	16 (36.4%)	9 (25.7%)	0.312
Ectopia lentis, n (%)	25 (56.8%)	3 (8.6%)	< 0.001
Systemic ≥7, <i>n</i> (%)	23 (54.1%)	29 (82.9%)	0.006
Family history, n (%)	15 (34.1%)	8 (22.9%)	0.275
Aortic event, n (%)	6 (13.6%)	20 (57.1%)	< 0.001
TA, n (%)	5 (11.4%)	13 (37.1%)	0.007
TAAD, n (%)	1 (2.3%)	7 (20.0%)	0.009

MVP Mitral valve prolapse, SD Sudden death, TA Thoracic aorta aneurysm, TAAD Type A dissection

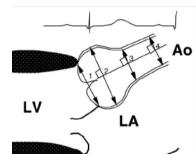

Diagnostic précoce d'une atteinte myocardique par strain 2D échographique chez l'enfant avec SM

39 enfants (4-18 ans) Marfan vs 41 témoins

=> Atteinte segmentaire (7 segments) prédominant au niveau basal avec un gradient apico basal.


IRM normale

RATSIMANDRESY M 2017

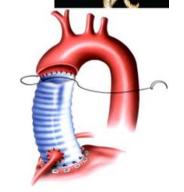

Segments altérés en rouge

Segment 10: inféro-médian Segment 1 : antéro-basal Segment 2 : antéro-septo-basal Segment 11: inféro-latéro-médian Segment 3 : inféro-septo-basal Segment 12 : antéro-latéromédian Segment 4 : inféro-basal Segment 5 : inféro-latéro-basal Segment 13 : antéro-apical Segment 6 : antéro-latéro-basal Segment 14: septo-apical Segment 7 : antéro-médian Segment 15: inféro-apical Segment 8 : antéro-septo-médian Segment 16 : latéro-apical Segment 9: inféro-septo-médian Segment 17: apical

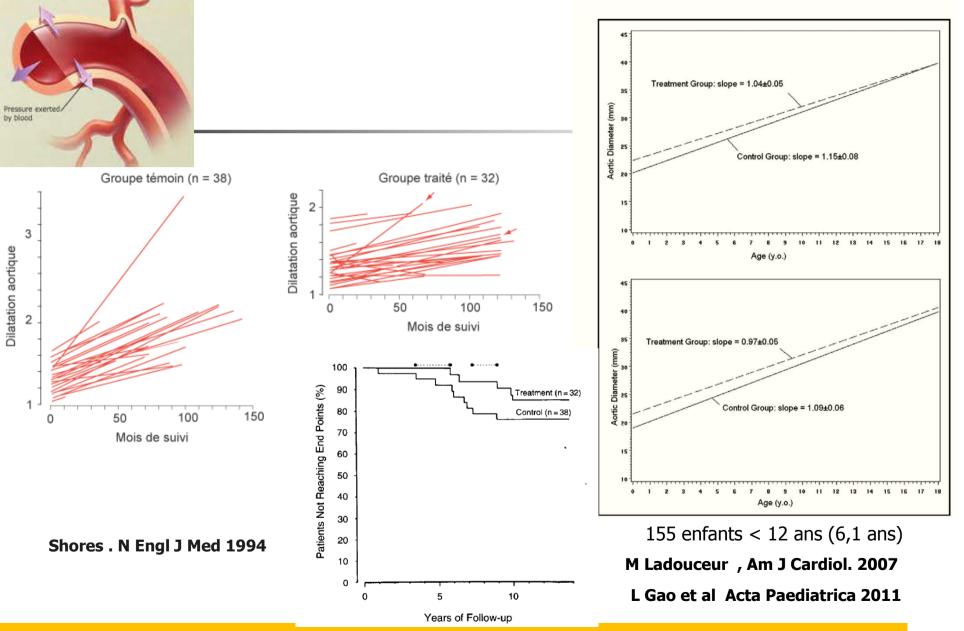
Quelle prévention cardiovasculaire chez l'enfant?

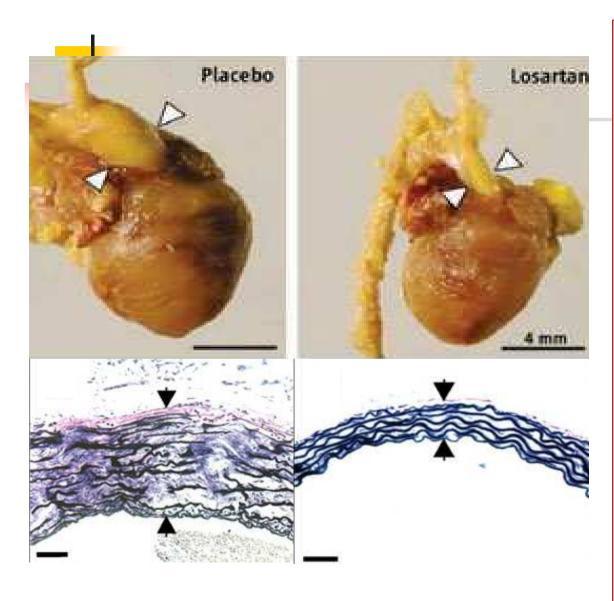
■ ⇒Dépister : famille

67BPM

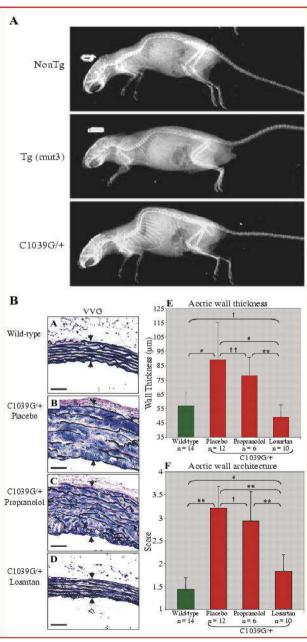


■ ⇒Surveiller: écho, IRM/TDM





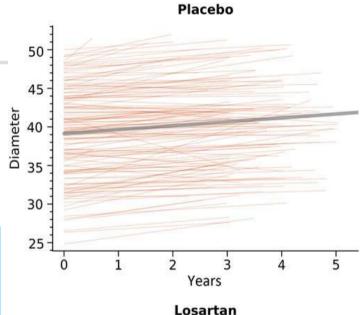
Traitement bétabloquant chez l'enfant avec SM

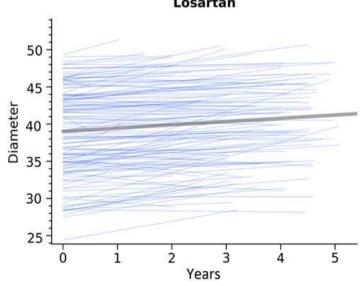


Les bétabloquants doivent être prescrits lors du diagnostic

Sartan et souris Marfan

Marfan Sartan: étude randomisée double aveugle


303 patients Marfan + > 10 ans

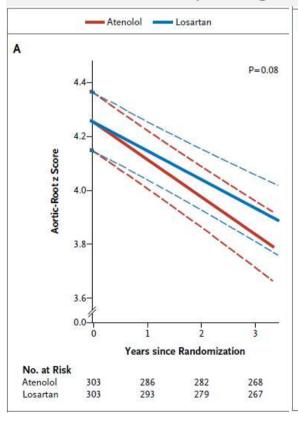

29% < 18 ans, FBN1: 78%.

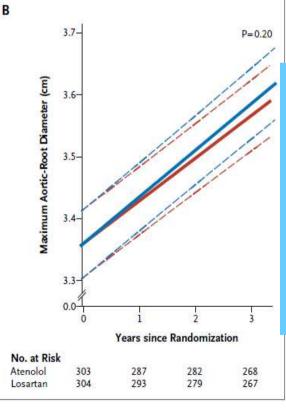
84% bétabloquants.

Evolution du diamètre aortique

	Losartan mean	Placebo mean	P-value
Aortic root (z-score/y) Aortic root (mm/y)	20.03 (0.03)	20.01 (0.03)	0.69
	0.44 (0.07)	0.51 (0.06)	0.36

Milleron O. Eur Heart J. 2015 .


ESTABLISHED IN 1812


NOVEMBER 27, 2014

VOL. 371 NO. 22

Atenolol versus Losartan in Children and Young Adults with Marfan's Syndrome

608 pts: **6 mois à 25 ans** (moy 11.2 + /- 6.3 ans), critères de Ghent + dilatation aortique significative (**Zscore** > **3**, Zscore moyen : 4.3).

Pas de différence significative

losartan vs atenolol (croissance aortique, événements)

Pas de groupe contrôle

Traitement + précoce = vitesse de dilatation moindre

Lacro RV, N Engl J Med. 2014.

Diamètre aortique et risque cardiologique

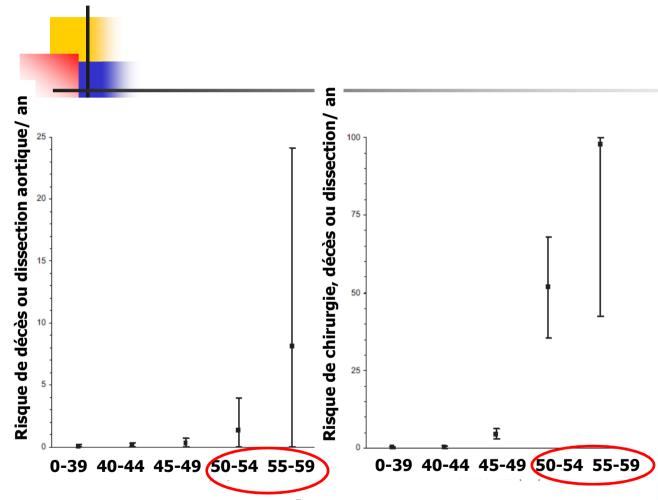
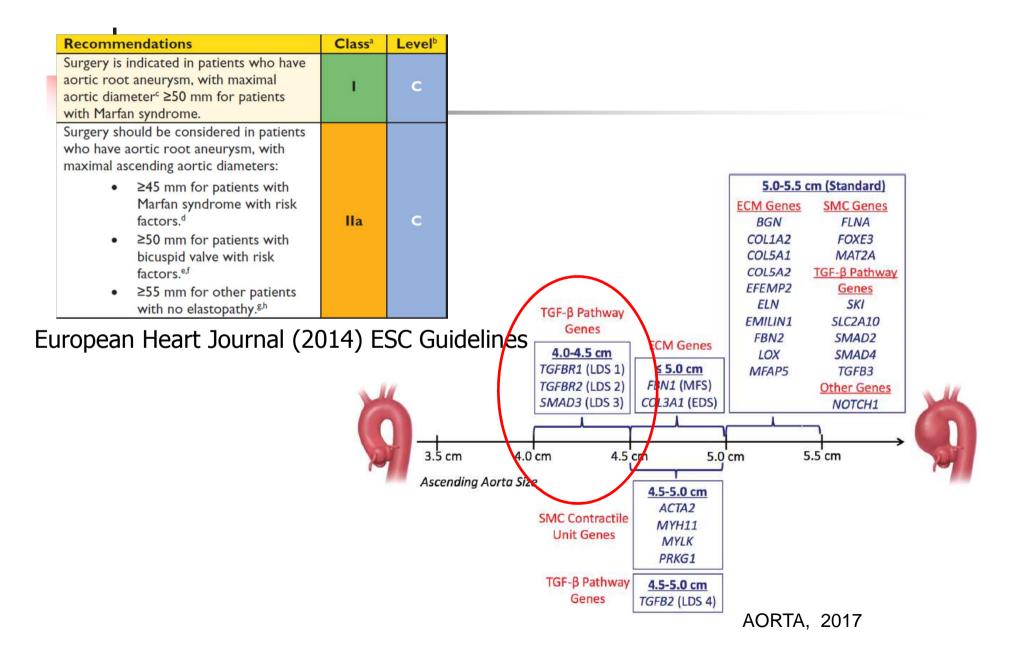


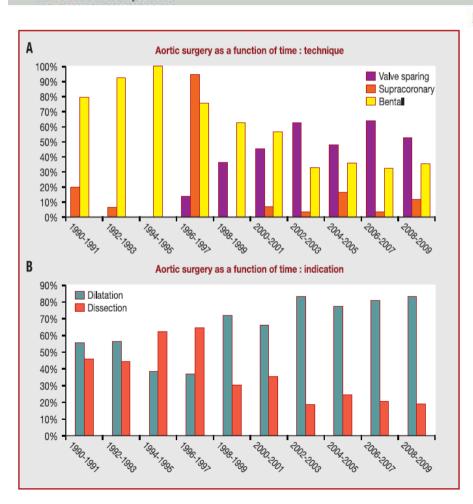
Table. Annual Aortic Risk as a Function of Maximal Aortic Diameter Measured at the Level of the Sinuses of Valsalva With Echocardiography Within 2 Years

	Patients, n	Event, n	Follow-Up, patient-y	Annual Risk, % (95% CI)
Aortic event without surgery				
Aortic diameter (mm)				
0-39	423	2	2353	0.09 (0.00-0.20)
40-44	219	1	995	0.10 (0.00-0.30)
45-49	157	2	675	0.38 (0.00-0.71)
50-54	54	1	75	1.33 (0.00-3.93)
55-59	14	1	12	8.14 (0 00-24.10)
Aortic event with surgery				
Aortic diameter (mm)				
0-39	423	7	2353	0.30 (0.08-0.52)
40-44	219	3	995	0.30 (0.00-0.64)
45-49	157	31	675	4.59 (2.98-6.21)
50-54	54	39	75	51.75 (35.51-68.00)
55-59	14	12	12	97.68 (42.41-100.0


Cl indicates confidence interval. Aortic event without surgery includes death (cardiovascular death, including sudden or of unknown cause) and aortic dissection. Surgery refers to aortic surgery with or without valve replacement.

Diamètre aortique

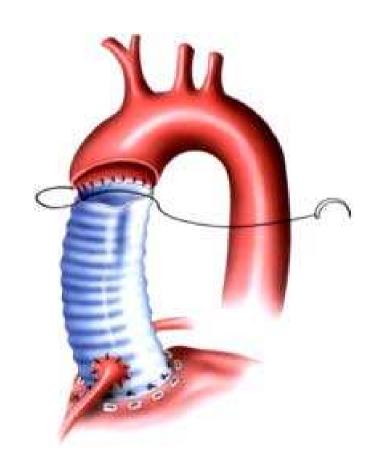
Jondeau . Circulation 2012


Diamètre indexé	Risque annuel
< 2 cm/m ²	0.1%
2 - 3 cm/m ²	0.14%
3 - 4.2 cm/m ²	0.43%
> 4.3 cm/m ²	5.07%

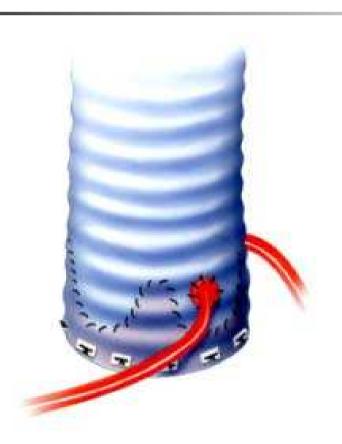
Chirurgie des dilatations aortiques et génétique

Chirurgie de l'aorte ascendante et Marfan

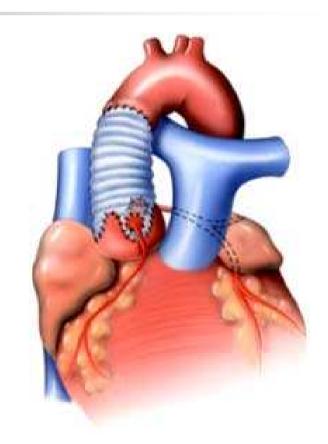
Indications for surgery in aortic root disease (whatever the severity of AR)	1 1		
Surgery is indicated in patients who have aortic root disease with maximal ascending aortic diameter ^a ≥50 mm for patients with Marfan syndrome.	1	C	
Surgery should be considered in patients who have aortic root disease with maximal ascending aortic diameter: ≥45 mm for patients with Marfan syndrome with risk factors ^c ≥50 mm for patients with bicuspid valve with risk factors ^c ≥55 mm for other patients	lla	C	



Vahanian A European Heart Journal (2012) 33, 2451-2496 **Opération de Bentall Opération de Tyrone David Yacoub et David**


Chirurgie préventive ou curative: l'opération de Bentall

Opération de Bentall:


- inconvénients d'une valve mécanique

Chirurgie préventive: Interventions conservatrices de la valve aortique

Opération de Tyrone David

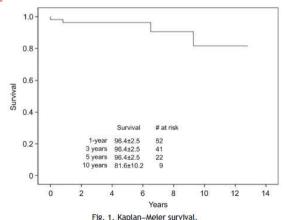
Yacoub et David

Chirurgie cardiaque pédiatrique et SM

Prolapsus mitral avec fuite mitrale symptomatique

Remplacement de l'aorte ascendante:

- Diamètre aortique > 50 mm (45 mm si histoire familiale de dissection) chez adolescents
- Vitesse de croissance rapide des diamètres aortiques (> 3 mm par an?)
- Fuite aortique significative
- Nécessité d'une chirurgie mitrale ou autre cardiaque avec dilatation aortique


Table 1. Baseline clinical characteristics

	n=56 (%)
Mean age at operation (years)	11.5±5.9
Male	34 (60.7)
Marfan syndrome	26 (46.4)
Loeys-Dietz syndrome	24 (42.8)
No connective tissue disorder	3 (5.4)
Non-specific connective tissue disorder	2 (3.6)
Previous cardiac surgery	5 (8.9)
Preoperative max sinus diameter (cm)	4.2 ± 0.8 (Z=7.7±2.9)
Preoperative STJ diameter (cm)	3.1 ± 0.9 (Z=5.6±3.2)
Preoperative annular diameter (cm)	$2.5\pm0.4 (Z=3.5\pm2.3)$
Preoperative >2+ aortic insufficiency	5 (8.9)

STJ, sinotubular junction

Yacoub et David

Patel et al 2011

Sport et syndrome de Marfan: des risques?

Sudden Death due to Aortic Dissection or Rupture in Competitive Athletes

US National Registry of Sudden Death in Athletes <40 ans

2588 décès

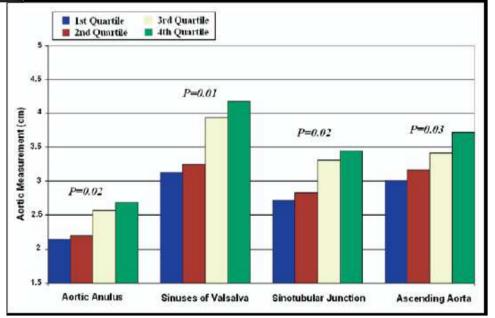
25 (1%) secondaire à dissection/rupture aortique

Syndrome de Marfan diagnostiqué ou suspecté chez 12

10:1 homme/femme

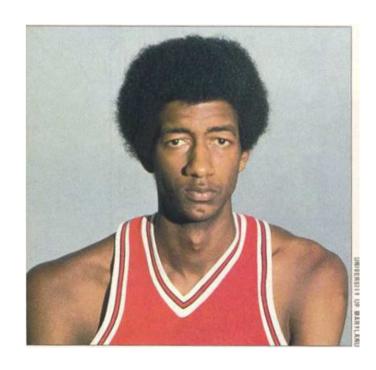
17.6 + **5** ans (11-36 ans)

Basketball/football/baseball + fréquents associés à MS


2/3 des cas de dissection aortique durant le sport

Sport et syndrome de Marfan: des risques?

Aortic Root Size in Elite Strength-Trained Athletes


Variable	Strength-train (n =		Control (n =	1	p Value	
	Mean	SD	Mean	SD		
Age (yrs)	22.1	5.6	21.6	3.3	NS	
Height (m)	1.81	0.07	1.83	0.09	NS	
Systolic blood pressure (mm Hg)	137.5	5.7	112.5	7.4	< 0.05	
Diastolic blood pressure (mm Hg)	86.2	6.5	71.7	5.4	< 0.05	
Aortic annulus (cm)	2.51	0.29	2.18	0.24	< 0.05	
Sinuses of Valsalva (cm)	3.82	0.41	3.16	0.32	< 0.05	
Sinotubular junction (cm)	3.41	0.28	2.95	0.31	< 0.05	
Ascending aorta (cm)	3.61	0.45	3.10	0.29	< 0.05	

Babaee Bigi et al. Am J Cardiol 2007

Sport et syndrome de Marfan: des risques?

Chris Patton 1976

Flo Hyman 1986


Recommandations pour le sport /exercice pour les patients avec syndrome de Marfan

Society / Organization	Recommendations
COMPETETIVE ATHLETES	
Bethesda Guidelines (2005) for MFS	 May participate in low and moderate static / low dynamic competitive sports if they do not have the following: Aortic root dilation > 4.0cm in adults, or 2SD from the mean for BSA in children Moderate-to-severe MR Family history of dissection of SCD in a Marfan relative Athletes should repeat echo measurement of aorta every 6 months
ESC Guidelines (2005) for MFS	No competitive sports
NON-COMETETIVE ATHLETE	is and the second of the secon
AHA Scientific Statement for MFS	 No burst activities (rapid acceleration / deceleration) Avoid intense isometric activities Avoid extreme environmental conditions or extreme sports (bungee jumping / hang gliding) Avoid collision sports
AHA/ACC Aortic Guidelines (2010)	 Avoid collision sports and strenuous activities involving lifting, pushing, or straining that require Valsalva for individuals with thoracic aortic disease
ESC Aortic Guidelines (2014)	 Avoid isometric exercise with a high static load in anyone with an elastopathy or BAV with a dilated root (>4.0cm)
The Marfan Foundation http://www.marfan.org/resource/fact- she et/physical-activities-guidelines	 Favor non-competitive, dynamic exercises such as brisk walking, jogging, leisurely bicycling or slow-paced tennis During exercise maintain a HR < 110 or < 100 if on B-blockers Avoid isometric activities (push-up / sit-ups/ weightlifting) Avoid contact sports

Sport et syndrome de Marfan

Recommandations (PNDS HAS 2018):

- De faire des sports sans esprit de compétition.
- De limiter les arrêts brutaux, les chocs avec les autres joueurs.
- De se limiter à 50 % de la capacité maximale.
- D'éviter les sports isométriques.

Levine AD, et al. JACC 2015;66:2350-3

Quels sports?

Autorisés sans restriction:

Golf – Billard – Bowling – Cricket –Tir a la carabine – Tir a l'arc- Yoga – Tai chi.

Autorisés en dilettante:

Ping-pong – Marche – Footing – Bicyclette – Natation – Plongée – Equitation– Voile – Baseball – Volleyball – Danse.

Autorisés avec les enfants:

Football – Tennis en double – Jeux de volants.

Interdits:

Lever de poids – Musculation – Bobsleigh – Luge – Lancer de marteau – Sports martiaux – Escalade – Ski nautique – Planche à voile – Escrime – Saut en hauteur – Rodéo – Rugby – Sprint – Ski de descente – Squash – Tennis – Basket – Hockey – Boxe – Combat – Décathlon – Canoë - Kayak – Course automobile – Course de moto – Badminton – Gymnastique – Step – Athlétisme – Aviron – Plongée en apnée – Saut en parachute –

Marfanpower

- La fatigue chronique et la diminution de l'endurance physique présentes chez 90% des patients, retentissent sur les activités de la vie quotidienne et la qualité de vie.
- Intérêt de l'activité physique et l'entrainement pour améliorer les capacités fonctionnelles mais aussi la fatigue et la qualité de vie?

➤ Etudier l'effet d'un programme de réhabilitation à l'effort personnalisé (Programme d'Entraînement Personnalisé, PEP) chez des enfants et adultes jeunes (< 25 ans) présentant un MFS, sur la masse musculaire et osseuse, l'endurance physique, l'atteinte cardiovasculaire et la qualité de vie .

Grossesse et Marfan

- Risque faible pour diamètre aortique < 40 mm Sous bêtabloquants avec surveillance cardiologique trimestrielle puis mensuelle au 3 éme trimestre.
- Déconseillée pour diamètre > 40 mm.
 Bêtabloquants, surveillance cardiologique étroite et césarienne à terme si néanmoins menée.

Pendant la grossesse :

- Suivi par échographie cardiaque à la fin du premier et du deuxième trimestre puis au 7eme, 8eme et 9eme mois.
- Le traitement bétabloquant ne doit pas être modifié pendant la grossesse ni au décours.

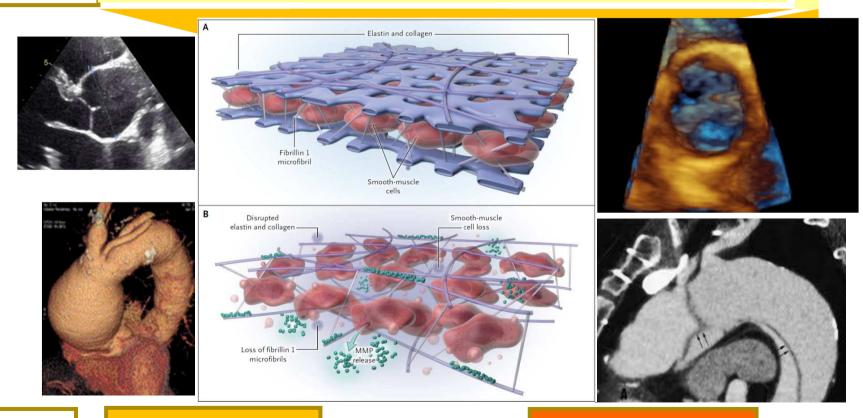
Pour l'accouchement :

L'accouchement par voie basse est en général possible si diamètre maximal aortique < 40mm.

Après l'accouchement

Le traitement par bétabloquants doit être poursuivi. L'allaitement est plutôt déconseillé.

Echographie cardiaque doit être réalisée dans le premier mois après l'accouchement.


Anévrysmes aortiques : diversité des étiologies , monotonie des phénotypes

Syndromiques

Non syndromique

molécules

fibrilline/TGFBR/myosin/Acta 2/notch-1/...

clinique

anévrysmes

dissections

Analyse moléculaire des pathologies aortiques

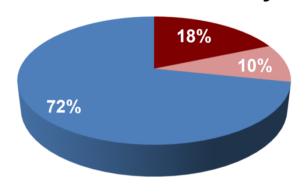
Nouveau panel 15 gènes > 30 gènes

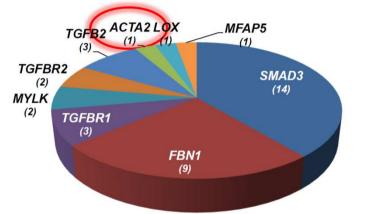
en attendantle séquençage haut débit pangénomique

De nouveaux phénotypes (BVA, cutis laxa...) >

Gene	borne HG19	NM	Gene-Phenotype Relationships	OMIM:	
FBN1	chr15:48700503- 48937985	NM_000138.4	Marfan Syndrome, Autosomal dominant Weill-Marchesani Syndrome, Familial Thoracic Aortic Aneurysms and Dissections, Isolated Ectopia Lentis, MASS Phenotype, Shprintzen-Goldberg Syndrome	134797 - 154700	autosomal dominant
TGFBR1	chr9:101867371- 101916473	NM_004612.2	Loeys-Dietz Syndrome Type I, Loeys-Dietz Syndrome Type II, Shprintzen-Goldberg Syndrome, Familial Thoracic Aortic Aneurysms and Dissections	190181	autosomal dominant
TGFBR2	chr3:30647994- 30735633	NM_003242.5	Loeys-Dietz Syndrome Type I, Loeys-Dietz Syndrome Type II, Shprintzen–Goldberg, Familial Thoracic Aortic Aneurysms and Dissections	190182	autosomal dominant
TGFB2	chr1:218518676- 218617961	NM_003238.3	Loeys-Dietz syndrome, type 4	190220	autosomal dominant
ACTA2	chr10:90694831- 90751147	NM_001613.2	Familial Thoracic Aortic Aneurysms and Dissections TAAD, early aortic dissection*, CAD, stroke(moyamoya disease), PDA, pulmonary arterydilation, BAV	102620 - 611788 613834 614042	autosomal dominant
MYH11	chr16:15796992- 15950887	NM_002474.2	Familial Thoracic Aortic Aneurysm and/or Aortic Dissection (TAAD) with Patent Ductus Arteriosus	614042 - 132900	autosomal dominant*
COL3A1	chr2:189839099- 189877472	NM_000090.3	Ehlers-Danlos Type IV Syndrome (Vascular)	120180 - 130050	autosomal dominant*
MYLK	chr3:123331143- 123603149	NM_053025.3	Aortic aneurysm, familial thoracic 7	600922 - 613780	autosomal dominant
SMAD3	chr15:67358195- 67487533	NM_005902.3	TAAD with Early Onset Osteoarthritis	603109 - 613795	autosomal dominant
SLC2A10	chr20:45338279- 45364985	NM_030777.3	Arterial Tortuosity Syndrome	208050	autosomal recessive
MFAP5	chr12:8798539- 8815484	NM_003480.3	Thoracic aortic aneurysm and dissection (TAAD) ARD	601103 - 616166	autosomal dominant
TGFB3	chr14:76424440- 76448365	NM_003239.3	Syndromic Aortic Aneurysms and Dissections -Rienhoff syndrome	190230 - 615582	autosomal dominant
SKI	chr1:2160134- 2241652	NM_003036.3	Shprintzen-Goldberg syndrome	164780 - 182212	autosomal dominant
PRKG1	chr10:52750911- 54058110	NM_006258.3	Aortic aneurysm, familial thoracic 8 TAAD, early aortic dissection*,AAA, coronary artery aneurysm/dissection,aortic tortuosity,small vessel CVD	176894 - 615436	autosomal dominant
NOTCH1	chr9:139388896- 139440238	NM_017617.3	Aortic valve disease	190198 - 109730	autosomal dominant*

Gene	borne HG19	NM	Gene-Phenotype Relationships	OMIM:	
BGN	chrX:152760347 -152775012	NM_001711.5	Meester-Loeys syndrome Spondyloepimetaphyseal dysplasia, X-linked	301870 - 300989	X-linked
EMILIN1	chr2:27301435- 27309265	NM_007046	Unidentified CTD Ascending and descending aortic aneurysm		autosomal dominant
FOXE3	chr1:47881744- 47883724	NM_012186	AAT11 ARD, TAAD (primarily type A dissection) [59]	617349	autosomal dominant
LOX	chr5:121398890 -121414196	NM_002317	TAAD, AAA, hepatic artery aneurysm, BAV, CAD	617168	autosomal dominant
MAT2A	chr2:85766101- 85772403	NM_005911	FTAA Thoracic aortic aneurysm, BAV		autosomal dominant
SMAD2	chr18:45359466 -45457517	NM_001135937	Unidentified CTD with arterial aneurysm/dissection ARD, ascending aortic aneurysm, vertebral/carotid aneurysm/dissection		autosomal dominant
SMAD4	chr18:48556583 -48611411	NM_005359	JP/HHT syndrome ARD, TAAD, AVM, IA	175050	autosomal dominant
COL1A2	chr7:94023873- 94060544	NM_000089	EDS, arthrochalasia type (VIIb) + cardiac valvular type TAAD, early aortic dissection*, visceral arterial dissection, vessel fragility, IA	130060 - 225320	AD + AR
COL5A1	chr9:137533651 -137736688	NM_000093	EDS, classic type ARD, rupture/dissection of medium-sized arteries	130000	autosomal dominant
COL5A2	chr2:189896641 -190044605	NM_000393	EDS, classic type (II) ARD	130000	autosomal dominant
EFEMP2	chr11:65633912 -65640405	NM_016938	Cutis laxa, AR type Ib Ascending aortic aneurysm, other arterial aneurysm, arterial tortuosity and stenosis	614437	autosomal recessive
ELN	chr7:73442119- 73484236	NM_000501	Cutis laxa, AD ARD, ascending aortic aneurysm/dissection, BAV, IA possibly associated with SVAS	123700 - 185500	autosomal dominant
FBN2	chr5:127593601 -127873735	NM_001999	Contractural arachnodactyly Rare ARD and aortic dissection [54], BAV, PDA	121050	autosomal dominant
FLNA	chrX:153576900 -153603006	NM_001456	Periventricular nodularheterotopia Aortic dilatation/aneurysm, peripheral arterial dilatation [57], PDA, IA [58], BAV	300049	X-linked


Forme héritable de dilatation aortique phénotype > génotype


- Marfan type squelettique
 - : BGN, FBN1, LOX, MFAP5, SMAD3, TGFB2, TGFB3, TGFBR1, TGFBR2
- Marfan type squelettique + luxation du cristallin: FBN1
- Loeys-Dietz syndrome avec type squelettique, craniosténose, fente palatine, luette bifide: TGFBR1, TGFBR2
- Peau fine, translucide, ecchymoses faciles, cicatrices atrophiques: COL3A1, SMAD3, TGFB2, TGFB3, TGFBR1, TGFBR2
- Rupture digestive, rupture utérine : COL3A1, TGFBR1, TGFBR2
- Canal artériel persistant: ACTA2, MYH11, TGFBR2
- Livedo reticularis et/ou iris flocculi: ACTA2
- Moyamoya-like pathologie vasculaire cérébrale, hypertension pulmonaire, malrotation digestive, : ACTA2, Arg179

Identification des gènes et mécanismes pathogéniques associés aux formes familiales d'anévrisme de l'aorte thoracique (TAA) PHRC National AOM10108

Variant pathogène identifié da

 Variant pathogène identifié dans un tiers des cas index présentant un TAA non syndromique

Variant de classe 4 ou 5 identifié
 Variant de classe 3 identifié (VSI)
 Pas de variants identifiés

Répartition par gènes des variants classe 4 et 5 dans les formes familiales de dilatation aortique

Cohorte Française – PHRC-TAA

- → Proposition de stratégie de diagnostic moléculaire standardisée :
 - TAA sporadiques jeunes (<45 ans)
 - TAA familiaux

Conclusions

Importance d'un diagnostic précoce : dépistage familial.

Surveillance cardiovasculaire dès 4-5 ans

Un traitement bétabloquant prescrit précocement.

Place des sartans encore à définir.

Adaptation des activités physiques et sportives

Intérêt de l'activité physique et sportive pour améliorer la fatigabilité et la qualité de vie?