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Abstract: Newborns with congenital heart defects tend to have a higher risk of growth restriction,
which can be an independent risk factor for adverse outcomes. To date, a systematic review of the
relation between congenital heart defects (CHD) and growth restriction at birth, most commonly
estimated by its imperfect proxy small for gestational age (SGA), has not been conducted. Objective:
To conduct a systematic review and meta-analysis to estimate the proportion of children born with
CHD that are small for gestational age (SGA). Methods: The search was carried out from inception
until 31 March 2019 on Pubmed and Embase databases. Studies were screened and selected by two
independent reviewers who used a predetermined data extraction form to obtain data from studies.
Bias was assessed using the Critical Appraisal Skills Programme (CASP) checklist. The database
search identified 1783 potentially relevant publications, of which 38 studies were found to be relevant
to the study question. A total of 18 studies contained sufficient data for a meta-analysis, which
was done using a random effects model. Results: The pooled proportion of SGA in all CHD was
20% (95% CI 16%–24%) and 14% (95% CI 13%–16%) for isolated CHD. Proportion of SGA varied
across different CHD ranging from 30% (95% CI 24%–37%) for Tetralogy of Fallot to 12% (95% CI
7%–18%) for isolated atrial septal defect. The majority of studies included in the meta-analysis were
population-based studies published after 2010. Conclusion: The overall proportion of SGA in all
CHD was 2-fold higher whereas for isolated CHD, 1.4-fold higher than the expected proportion in
the general population. Although few studies have looked at SGA for different subtypes of CHD,
the observed variability of SGA by subtypes suggests that growth restriction at birth in CHD may be
due to different pathophysiological mechanisms.

Keywords: congenital heart defects; small for gestational age; systematic review; meta-analysis;
population-based study

1. Introduction

Congenital heart defects (CHD) are the most common group of congenital anomalies with a live
birth prevalence of 8.2 per 1000 births in Europe [1]. Despite considerable progress in medical and
surgical management of CHD, they remain the most important cause of infant death by malformation.
One study suggested that there were approximately 260,000 deaths due to CHD in 2017 [2]. However,
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the survival rate is much higher in high resource countries and a recent review found that 85% of
children with CHD reach adulthood [3].

Growth restriction at birth, often measured by its imperfect proxy small for gestational age is an
important risk factor for perinatal mortality, morbidity, and long-term adverse outcomes, including an
increased risk of diabetes, hypertension, and cardiovascular disease later in life.

Therefore, growth restriction in a newborn with a CHD may represent a “double jeopardy”
with risks related to CHD combined with those associated with growth restriction. Moreover,
differences in the proportion of CHD subtypes with growth restriction may provide clues about
possible pathophysiological mechanisms of the relation between growth restriction and CHD.

To date, no systematic review of the relation between CHD and growth restriction at birth has
been conducted. The objective of our study was to conduct a systematic review and meta-analysis of
the relation between growth restriction at birth and CHD.

2. Methods

This study is reported in accordance to Preferred Reporting Items for Systematic Review and
Meta-analyses (PRISMA) guidelines [4]. The review protocol was registered on the PROSPERO:
International Prospective Register of Systematic Reviews website [5]. As data sources originated from
previously published studies in the public domain, ethical approval for this study was not requested [6].

2.1. Search Strategy

A comprehensive literature search was carried out on Pubmed/Medline and Embase databases
with the assistance of a specialized documentalist. Medical Subject Headings (MeSH)/Medical Embase
Medical Headings (EMTREE) and keywords that included different synonyms for CHD, CHD subtypes,
small for gestational age (SGA), fetal growth restriction (FGR)/intrauterine growth retardation (IUGR)
and low birth weight were combined together using Boolean operators. The search was carried
out from inception until 31/03/2019 and no language preferences were applied. A manual search of
references in included articles was carried out to complete the search.

2.2. Study Selection

Titles and abstracts of retrieved studies were screened independently by two blinded reviewers
(AG and ND) using Rayaan web application [7]. Excluded articles were about CHD and low birth
weight only, conference abstracts, CHD and single umbilical artery, absence of SGA data, matched case
control studies, use of estimated fetal weight from ultrasound data, and SGA outcomes in the offspring
of women born with CHD.

2.3. Data Extraction

A predetermined data extraction form was designed and used independently by the two reviewers
(AG and ND). Extracted data for each study included study characteristics, object of study, SGA
outcomes, data sources, exclusion criteria, and SGA proportions. Authors of studies were contacted to
request further information or clarification of results.

2.4. Evaluation of Bias

The Critical Appraisal Skills Programme (CASP) cohort study checklist evaluated the risk of bias
in studies included in this review [8]. The checklist contains 12 questions divided into three sections
that enable a structured approach to finding evidence, determine possible sources of bias, and evaluate
internal and external validity of each study. We adapted this checklist to our study question paying
particular attention to selection and measurement biases.
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Throughout the entire process (article selection, data extraction, and evaluation of bias)
discrepancies were resolved through end result discussion. Any further disagreements between
the two reviewers (AG and ND) were resolved by a third reviewer (BK).

2.5. Definitions

CHD was defined as children born with structural heart defect and excluded patent ductus
arteriosus, cardiac tumors, cardiomyopathies, and arrhythmias. Isolated CHD was defined as CHD
not associated with chromosomal anomalies, malformations from other systems or syndromes. Due to
data availability, we used SGA as an imperfect measure of growth restriction at birth. We used the
consensual definition of SGA, defined as birthweight <10th percentile according to gestational age and
compared to a standard population [9]. Studies were grouped according to birthweight percentile
cut-off rather than labels assigned by the different authors.

2.6. Statistical Analysis

A meta-analysis of pooled proportions (with their 95% confidence intervals) was carried out using
a random effects model with inverse variance weighting, using the Simonian and Laird method [10,11].
Freeman–Tukey double arcsine transformation was used to limit the effects of over-weighting caused
by studies with a variance close to zero for estimating the confidence intervals for the pooled
estimate [10,11]. The I2 statistic assessed statistical heterogeneity between groups. Principal analysis
concerned all/isolated CHD using the SGA defined using the 10th percentile cutoff threshold. Additional
analyses were conducted for CHD subtypes and for severe SGA using the 3rd percentile. Sensitivity
analysis was carried by restricting the analysis to only population-based studies. The meta-analysis
was performed using STATA 12.1 software (StataCorp LP., College Station, TX, USA). We considered
p-values < 0.05 as statistically significant.

3. Results

The database search identified 1783 potentially relevant publications of which 72 articles were
assessed for eligibility. An additional two studies were found through hand searching of reference
lists [12,13]. In total 38 studies were found to be relevant to the study question of which 18 citations
contained sufficient data for a meta-analysis (Figure 1).
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published between 2010 and 2019. Sample sizes of patients with CHD ranged from 16 to 99,786. 
Twenty-six studies (68.5%) were based on US cohorts. The reference populations varied greatly based 
on geographical location and the year of study. Overall, 19 different reference populations were cited. 
The most frequent was growth curve by Alexander et al., which was used in six American studies 
while eight (21%) studies did not state which reference population was used.

Figure 1. Flow chart to indicate the selection of studies.

3.1. Study Characteristics

Characteristics of the studies according to year of publication, country and objective of the
study are shown in Table 1. Publication years ranged from 1972 to 2018 and 23 (60.5%) studies were
published between 2010 and 2019. Sample sizes of patients with CHD ranged from 16 to 99,786.
Twenty-six studies (68.5%) were based on US cohorts. The reference populations varied greatly based
on geographical location and the year of study. Overall, 19 different reference populations were cited.
The most frequent was growth curve by Alexander et al., which was used in six American studies
while eight (21%) studies did not state which reference population was used.
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Table 1. Number of citations according to different study characteristics.

Characteristics of Study Number of Publications Number of Publications in MA

Year of Publication (n = 38) (n = 18)
1970–1979 3 (7.9%) 2 (11.1%)
1980–1989 1 (2.6%) 1(5.6%)
1990–1999 3 (7.9%) 2 (11.1%)
2000–2009 8 (21.1%) 6 (33.3%)
2010–2019 23 (60.5%) 7 (38.9%)
Country (n = 38) (n = 18)
USA 26 (68.5%) 14 (77.8%)
Sweden 4 (10.5%) 1 (5.6%)
China 3 (8%) 1 (5.6%)
Italy 1 (2.6%) 0
France 1 (2.6%) 0
Chili 1 (2.6%) 0
UK 1 (2.6%) 1 (5.6%)
Definition of SGA according to percentile (n = 38) (n = 18)
10th percentile (consensus definition of SGA) 22 (57.9%) 14 (77.8%)
3rd percentile 7 (18.4%) 4 (22.2%)
Undefined percentile 9 (23.7%) 0
Consensus definition of SGA: 10th percentile: (n = 38) (n = 14)
No comparison 6 (27.2%) 4 (28.6%)
According to gestational age and sex 6 (27.3%) 4 (28.6%)
According to gestational age 4 (18.2%) 3 (21.4%)
According to gestational age, sex and race 3 (13.7%) 1 (7.1%)
According to gestational age and race 2 (9.1%) 2 (14.3%)
According to gestational age, race, sex, and single or
multiple gestation 1 (4.6%) 0

Birthweight data provided for SGA 35 (92.1%) 18 (100%)

Characteristics of Study Number of Publications Number of Publications in MA

SGA 1st aim of study 17 (44.7%) 13 (72.2%)
CHD
All 23 8
Isolated 10 7
CHD subtype
HLHS 10 8
ToF 10 7
CoAo 8 7
TGV 7 7
AVSD 7 7
ASD 7 6
TA 3 3
CAT 3 3

Legend: MA—meta-analysis; SGA—small for gestational age; CHD—congenital heart defect; HLHS—hypoplastic
left heart syndrome; ToF—Tetralogy of Fallot; VSD—ventricular septal defect; CoAo—coarctation of the aorta;
TGV—transposition of great vessels; AVSD—atrioventricular septal defect; ASD—atrial septal defect; TA—tricuspid
atresia; CAT—common truncus arteriosus.

Of the 38 studies included in the systematic review, 22 (57.9%) used birthweight <10th percentile)
for definition of SGA; 17 (44.7%) studies were designed specifically to study SGA and CHD as their
primary objective. Six studies (27.2%) did not report explicitly the use of gestational age or a reference
population in their definition of SGA, whereas six studies (27.2%) studies considered gender in addition
to gestational age in the definition of SGA (Table 1). Three (7.9%) studies used the term FGR even
though the actual outcome was SGA.

Twenty-three (60.5%) studies comprised all CHD and 10 (26.3%) isolated CHD only. In addition,
12 specific subgroups were studied with the majority of studies on hypoplastic left heart syndrome
(HLHS) and Tetralogy of Fallot (ToF) (10 publications).
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3.2. Proportion of SGA in All CHD, Isolated CHD, and Subgroups Reported by Individual Studies

As shown in Table 2, the proportions of SGA in all, isolated, and subgroups of CHD varied greatly
across the studies in the systematic review. It was found that four (10.5%) studies on isolated CHD
reported same proportion of SGA i.e., 15%. The proportion of SGA varied between 3% and 37%
for HLHS 8% and 67% for ToF and 10% and 40% for ventricular septal defects and 5% and 57% for
coarctation of the aorta (CoAo).

Some studies were restricted to preterm births or very low birth weight infants even though by
far most studies included all gestational ages. Certain studies included a selected set of newborns
with CHD, e.g., those operated for critical CHD. Only one study examined SGA for isolated CHD
subgroups [14].



Int. J. Environ. Res. Public Health 2020, 17, 3056 7 of 20

Table 2. Summary of key characteristics of individual studies.

Author Country Definition of SGA CHD CHD (n) SGA (%)

Archer (2011) [23] USA <10th P◦ according to GA, maternal race, gender, and type of gestation All 99,786 21
Bain (2014) [24] USA <10th P◦ according to GA, gender, race All 98,523 24

Calderon (2018) [25] France <10th P◦ according to GA and gender All 419 14

Cedergren (2006) * [26] Sweden <2SD below mean birth weight according to GA All 6346 7
Isolated 5338 6

Chu (2015) [27] USA ICD? All 28,806 6
Cnota (2013) [28] USA <10th P◦ according to GA, gender, race HLHS 33 No data

Joelsson (2001) [29] Sweden Not stated PAIVS 84 14
El Hassan (2008) [30] USA ICD HLHS 5720 3

Fisher (2015) [31] USA Not stated All 235,643 43
Gelehrter (2011) * [32] USA <3rd P◦ according to GA HLHS 52 37

Jacobs (2003) * [33] China <-2 z score from normal mean for age and gender

Isolated 454 15
PA 18 11
ToF 63 24
TGV 12 16
CoAo 20 20
VSD 86 12
ASD 31 23
PS 52 11

Jones (2015) * [20] USA <10th P◦ according to GA and gender HLHS 16 31
Josefsson (2011) [34] Sweden <-2 SD of the mean birthweight for gestational length All 2216 31

Karr (1992) [35] USA Not stated ToF 125 21
Kernell (2014) [36] Sweden <-2 SD of the mean birthweight for gestational length All 2689 21

Khoury (1988) * [12] USA <10th P◦ according to GA, race and gender

All 3669 28
HLHS 91 23
CAT 34 24
ToF 110 33
TGV 167 17
CoAo 139 28
VSD 833 27
ASD 409 30

i.ASD 26 11
AVSD 103 28
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Table 2. Cont.

Author Country Definition of SGA CHD CHD (n) SGA (%)

Kramer (1990) * [37] West Germany <10P◦

Isolated 843 15
ToF 81 26
TGV 60 15
AS 45 8

CoAo 69 13
VSD 236 13
ASD 70 17

Levin (1975) [38] USA Not stated
All 37 43

VSD 5 40
AoA 3 70

Levy (1978) * [39] USA <2SD below mean birth weight of control group

All 2178 6
HLHS 163 6

TA 64 5
TAPVR 58 3

ToF 156 7
TGV 217 2
AS 43 2

CoAo 136 6
VSD 313 10
ASD 59 8

AVSD 107 8
PS 81 5

PAIVS 64 6
Li (2009) [21] China Not stated All 274 5

Lupo (2011) [40] USA <10th P◦ according to GA and gender Ebstein 175 19
Malik (2007) * [16] USA <10th P◦ according to GA and gender Isolated 3395 15

Nembhard (2009) * [41] USA <10th P◦ using race specific growth curve

All 9645 19
HLHS 283 23
CAT 112 25
ToF 602 26

Ebstein 61 15
TGV 472 20
CoAo 592 20
VSD 5528 17
ASD 467 28
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Table 2. Cont.

Author Country Definition of SGA CHD CHD (n) SGA (%)

Nembhard (2007) * [17] USA <10th P◦ using race specific growth curve All 12,964 16
Isolated 10,870 13

Oyarzún (2018) [22] Chile Not stated Isolated 46 26
Pappas (2012) [42] USA <10th P◦ All 110 27
Polito (2013) [43] Italy <3rd P◦ All 70 17

Reynolds (1972) * [13] USA <10th P◦ according to GA All 433 14
AS 21 38

Rosenthal (1991) * [14] USA <10th P◦ according to GA

Isolated 1299 12
HLHS 96 20
CAT 113 18
ToF 119 7

Ebstein 57 5
TGV 103 10
CoAo 470 11
VSD 130 12
ASD 44 18
PS 167 14

Sochet (2013) [44] USA <10th P◦ according to GA All 230 25
Steurer (2018) * [45] USA <10th P◦ according to GA and sex Isolated 6863 16
Story (2015) * [46] UK <10th P◦ Isolated 308 16

Swenson (2012) * [47] USA <10th P◦

All 753 21
HLHS 261 19

TA 38 16
CAT 28 21

DROV 54 24
TAPVR 35 26

ToF 70 36
TGV 181 13
IAA 44 36

AVSD 25 32
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Table 2. Cont.

Author Country Definition of SGA CHD CHD (n) SGA (%)

Wallenstein (2012) * [18] USA <10th P◦
All 193 24

Isolated 129 15

Wei (2015) [48] USA Size < 10th P◦

All 74 51
HLHS 11 30

ToF 12 70
Ebstein 4 50
CoAo 7 57
VSD 6 17

PAIVS 5 60

Williams (2010) * [49] USA <10th P◦ according to GA

HLHS 606 20
TA 114 30

AVSD 148 25
PAIVS 102 25

Wollins (2001) * [19] USA <10th P◦ according to sex and GA CoAo 181 12
Yu (2014) [15] China Not stated All 477 11

Legend: * included in meta-analysis. § Not a population-based study. σ SGA 1st aim of study. SGA—small for gestational age; CHD—congenital heart defect; HLHS—hypoplastic
left heart syndrome; ToF—Tetralogy of Fallot; VSD—ventricular septal defect; CoAo—coarctation of the aorta; TGV—transposition of great vessels; AVSD—atrioventricular septal
defect; ASD—atrial septal defect; i.ASD—isolated atrial septal defect; TA—tricuspid atresia; CAT—common truncus arteriosus; PAIVS—pulmonary atresia intact ventricular septum;
TAPVR—total anomalous pulmonary venous return; DORV—double outlet right ventricle; IAA—interrupted aortic arch; AoA—aortic atresia; PS—pulmonary stenosis; AS—aortic
stenosis; P◦—percentile; GA—gestational age; SD—standard deviation; ICD—international classification of diseases.
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3.3. Evaluation of Bias

Studies were evaluated for bias using a modified CASP checklist. Yu et al. was omitted because
we could not obtain the full article [15]. All studies addressed a clearly focused issue, however the
quality of studies regarding other criteria in the checklist varied greatly. In particular, most studies
were to some extent subject to selection and measurement bias, especially with regards to diagnosis of
CHD using a validated diagnostic method.

Few studies took into consideration the effects of confounding factors (e.g., parity, ethnicity,
maternal disease, maternal smoking, etc.). Four studies were found to have a lower risk of bias [15–18],
whereas five others were deemed to have a higher risk of bias [12,19–22]. Confidence intervals (CI)
for SGA proportions were not provided in any study. Notwithstanding differences in geographic
locations and reference populations, external validity criterion was met for most studies as they
were population-based.

3.4. Meta-Analysis

Of the 38 articles in the systematic review, we used 18 (47.4%) in the meta-analysis. The reasons
for excluding studies from the meta-analysis are detailed in Figure 1. These included studies of low
birth weight and preterm newborns only, unclear definition or of CHD subgroups included, absence of
data on birth weight or clear definition of SGA, and studies limited to one gender only.

The pooled proportion of SGA in all CHD was 20% (95% CI 16–24%) and for isolated CHD 14%
(95% CI 13–16%) (Figure 2). Limiting the meta-analysis only to population-based studies did not
change the results appreciably. Based on two studies that used the 3rd percentile, the proportion of
severe SGA for all CHD was 6% (95% CI 6–7%).Int. J. Environ. Res. Public Health 2020, 17, x 12 of 21 
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Table 3 illustrates the results of meta-analysis for subgroups of CHD. Genetic and other anomalies
were not explicitly excluded in the studies reporting on subgroups of CHD. Pooled proportion of SGA
was 30% for ToF, 21% for HLHS, and 17% for transposition of great vessels (TGV). The proportion of
SGA was lowest for isolated atrial septal defects (ASD) with a proportion of 12%.

Table 3. Meta-analysis of proportions of SGA in different CHD subgroups (including genetic
anomalies/syndromes) using the 10th percentile cutoff threshold.

Subgroup Author Pooled Proportion (95% CI) % Weight

HLHS

Total pooled result 21 (19–23)
Khoury (1988) [12] 23 (15–33) 7.36

Nembhard (2009) [41] 23 (18–28) 22.81
Williams (2010) [49] 20 (17–24) 48.79
Swenson (2012) [47] 19 (15–24) 21.04

ToF
Total pooled result 30 (24–37)

Khoury (1988) [12] 34 (25–43) 29.05
Nembhard (2009) [41] 26 (23–30) 48.18
Swenson (2012) [47] 36 (25–48) 22.77

TGV
Total pooled result 17 (13–22)

Khoury (1988) [12] 17 (11–23) 28.79
Nembhard (2009) [41] 20 (17–24) 41.34
Swenson (2012) [47] 13 (8–18) 29.87

VSD
Total pooled result 19 (18–20)

Khoury (1988) [12] 27 (24–31) 13.1
Nembhard (2009) [41] 17 (16–19) 86.9

CoAo
Total pooled result 22 (19–25)

Khoury (1988) [12] 28 (21–36) 19.06
Nembhard (2009) [41] 20 (17–24) 80.94

AVSD
Total pooled result 27 (21–32)

Khoury (1988) [12] 28 (20–38) 37.3
Williams (2010) [49] 25 (18–33) 53.51
Swenson (2012) [47] 32 (15–54) 9.19

TA
Total pooled result 27 (21–35)

Williams (2010) [49] 30 (22–39) 74.84
Swenson (2012) [47] 21 (10–37) 25.16

CAT
Total pooled result 23 (17–30)

Khoury (1988) [12] 24 (11–41) 19.66
Nembhard (2009) [41] 25 (17–34) 64.1
Swenson (2012) [47] 18 (6–37) 16.24

Legend: HLHS—hypoplastic left heart syndrome; ToF—Tetralogy of Fallot; VSD—ventricular septal defect;
CoAo—coarctation of the aorta; TGV—transposition of great vessels; AVSD—atrioventricular septal defect;
TA—tricuspid atresia; CAT—common truncus arteriosus.
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4. Discussion

4.1. Main Findings and Interpretations

This systematic review and meta-analysis found 38 articles that studied the association between
SGA and CHD. The pooled proportion of SGA for all CHD was 20% and for isolated CHD 14%. Given
the definition of SGA as the 10th percentile, these results suggest that overall, newborns with CHD
have a two-fold greater risk of SGA compared to its theoretical value and those with isolated CHD a
1.4-fold higher risk of SGA. Estimates of SGA in the general population in developed countries are also
considerably lower than the pooled proportions in our meta-analysis [50,51]. There was a great deal of
variability in the proportion of SGA for different CHD. Tetralogy of Fallot had the highest proportion
of SGA whereas isolated ASD had the lowest proportion of SGA. The range of SGA proportions across
studies was highly variable for CHD, isolated CHD, or given subgroups of CHD in the 38 studies
included in the systematic review. However, this variability decreased substantially for the 18 studies
included in the meta-analysis.

Overall, approximately 20%–30% of CHD are due to known chromosomal, genetic, or other
anomalies [52,53]. Some of these anomalies, e.g., Down Syndrome, Turner Syndrome may in turn be
associated with growth restrictions. Indeed, isolated CHD had a substantially lower proportion of
SGA. The issue of associated anomalies complicates the interpretation of differences in subgroups of
CHD as they may be more (ToF) or less (HLHS or CoA) associated with other anomalies.

The higher proportion of SGA in newborns with CHD may be caused either by the CHD itself
and/or by a common etiological factor (maternal, fetal, placental) that can cause both CHD and growth
restriction [12,16,52,54].

With regards to the theory that CHD causes SGA, a number of authors suggest that alterations in
fetal hemodynamics and oxygen saturation due to CHD are the root cause of this association [12,14,16,51].
Differences in SGA proportions according to CHD subtypes that we identified in this review support
this hypothesis with the proportions of SGA varying from 22% for CoA to 12% in isolated ASD.
Wallenstein et al. hypothesized that reduced ventricular function decreases cardiac output resulting
in stunted fetal growth [18]. Our findings of increased SGA in HLHS (21%) are consistent with this
mechanism. Story et al. maintained that decreased oxygenation in the aortic arch reduces cerebral
perfusion and thus causes SGA [46]. Our findings of increased proportions of SGA in transposition of
great arteries (TGA) (17%) may be at least in part explained by this mechanism. Sun et al. also found
that decreased oxygen consumption is associated with smaller brain sizes in children with CHD [55].

Several authors have hypothesized that the association between SGA and CHD is caused by one
or more common etiological factors (maternal, placental, fetal, and/or environmental) that result in both
CHD and SGA [20,54]. Malik et al. have proposed that smoking may contribute to a common etiological
pathway for CHD and SGA [56]. Although 33 studies (86%) included in our review provided data on
maternal smoking only four (11%) took this into consideration in their statistical analysis [14,18,19,26].
Cedergren and Kallen theorized that disturbed placentation caused by abnormal trophoblastic growth
in early pregnancy results in both SGA and CHD [26]. While, Jones et al. argued that placental
insufficiency is the common causal pathway for HLHS [20]. They asserted that placental insufficiency
reduces angiogenesis and villous tree maturation of the placenta, thereby reducing the surface area for
gaseous and nutritional exchanges. As a result, SGA is induced directly and indirectly by nutritional
deficiency. Their observations of increased placental leptin secretion led them to speculate that a
predisposition for HLHS is the result of some kind of compensatory mechanism. Nevertheless, the
effect of leptin in myocardial hypertrophy is debatable in the literature [57].

In addition to the two possible physiopathological mechanisms previously discussed, Spiers et al.
proposed another, even if a minority position, hypothesis in the literature [12,14,46,58] According to
Spiers et al., early FGR during cardiogenesis may result in CHD; in other words, SGA may be the cause
of CHD [46,58]. Despite the fact that early FGR is very difficult to diagnose, five authors in this review
made reference to this theory to account for the genetic anomalies and syndromes that are associated
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with CHD. They used this theory to explain that an intrinsic disturbance in fetal growth could provide
a predisposition for CHD. However, to our knowledge little evidence exists to corroborate this theory.

In general, our results raise several questions about the possible underlying mechanisms of the
association between SGA and CHD. Few studies were designed to examine this association specifically
or to investigate different mechanisms that may explain the association between CHD and SGA.
Moreover, the roles of confounding, intermediate (mediating) variables, and possible interactions in
the causal pathway(s) between CHD and SGA have not been adequately studied. For example, the role
of maternal age, if any, is unclear. While it is well known that maternal age (and parity) are associated
with SGA, whether or not maternal age (or parity) in and of itself are risk factors for CHD is not known.
Previous studies have provided conflicting results about the possible association between maternal
age and CHD even if maternal age is known to be associated with SGA [3,59–62].

The genetic mechanisms potentially related to the association between CHD and SGA appear to
be the result of complex, multifactorial interactions between genetics, epigenetics, and the environment
that are poorly understood [61–63]. Certain specific isolated CHD subtypes may be caused by point
mutations to transcription factors of specific genes (e.g., IRX4 results in VSD) that affect cardiogenesis.
The expression of genes either directly (through methylation or other mechanisms) or indirectly
via environmental exposure has been associated with CHD. DNA methylation was one of the first
epigenetic mechanisms to be associated with CHD e.g., aberrant methylation of NKX2–5 and HAND1
genes has been observed to result in TOF [62]. A hypomethylative state of certain maternal genes
may result in CHD being inherited in the offspring [64,65]. Monteagudo-sanchez et al. found that
aberrant methylation of placental genes resulted in FGR although to our knowledge no study has
yet to investigate hypomethylation of genes that cause both CHD and SGA [64]. Alternatively,
chromatin remodeling and histone modification may also result in CHD epigenesis e.g., inactivation of
deacetylases 5 and 9 are a feature of lethal VSD [61,62]. Small non-coding RNA may also contribute to
the epigenetics of CHD with recent studies indicating that they are highly susceptible to environmental
exposures e.g., cigarette smoking [60,65]. Similarly, through the same physiopathological pathways,
maternal diabetes and obesity may induce CHD [61]. However, no study has specifically investigated
the role of genetics or epigenetics in the association between SGA and CHD.

Another unresolved issue concerns the role of multiple pregnancies and its possible effect in the
association between CHD and SGA. Although, Gijtenbeek et al. found in a systematic review that
there is more CHD in twin pregnancies, which in turn are known to have higher rates of SGA [66].
Consequently, the link between multiple pregnancy and advanced maternal on CHD and SGA is
unclear because to our knowledge few studies have addressed this issue. The key underlying factor
between type of pregnancy and CHD-SGA being the placenta which could have a direct or indirect
role in this association [20,67–69]. Jones et al. found a physiopathological explanation of SGA in
HLHS based on placental histological analysis, a finding corroborated by other authors specializing in
placentology rather than our study question [20]. For example, Matthiesen et al. investigated fetal
and placental growth using Z scores [70]. Despite finding a slight difference in placental growth for
HLHS, Matthiesen et al. observed an association between suboptimal placental weight and impaired
fetal growth for TOF, VSD, and double outlet right ventricle [70]. Consequently, they concluded
that placental growth is part of the causal pathway of the association between SGA and certain
CHD. In conclusion, from our findings and based the literature, we hypothesize that both placental
dysmorphology and abnormal fetal hemodynamics could play a role in the association between CHD
and SGA. However further study is required to fully investigate this hypothesis.

This systematic review also confirmed ambiguity in the use of FGR and SGA in the literature.
Despite the fact that SGA and FGR are quite distinct concepts, the terms were used interchangeably by
different authors using a variety of definitions, cutoff thresholds and reference populations to infer
the same meaning; SGA often being used as a proxy for FGR. A recent consensus based definition
using a Delphi procedure defined FGR using exclusively ultrasound measurements [71]. While an
international meeting of experts in 2007 reached a consensus on SGA, defining it as “a weight and/or



Int. J. Environ. Res. Public Health 2020, 17, 3056 15 of 20

length less than minus 2 standard deviations from the mean”; confusion still reigns [72,73]. Once
our literature review was completed, we found an article that used the term “growth restriction in
the newborn (GRN)” aimed at clarifying the situation [74]. This consensus-based definition, defined
GRN as “birthweight < 3rd percentile compared to population or customized charts”. Alternatively,
the presence of three out of the following five criteria: “birthweight <10th percentile compared to
population or customized references, head circumference <10th percentile, length <10th percentile,
prenatal diagnosis of FGR, and data on maternal pregnancy pathology” [48]. Of the 38 studies included
in our systematic review, seven (18.4%) studies used a definition of SGA as birthweight < 3rd percentile
thereby conforming to the recent definition of GRN. Although only two studies could be used in the
meta-analysis, the proportion of GRN in all CHD was 6% (95% CI 6%–7%) [26,39,74]. However, we
were unable to compare this to the proportion of GRN in the general population from the literature as
this is a new concept. For the same reason our search did not find any study on CHD that specifically
used the term GRN and further studies on this subject is required.

4.2. Strengths

Strengths of this systematic review are that a thorough search of the literature was carried out by
a multidisciplinary team with specializations in pediatric cardiology, obstetrics, epidemiology, and
library science. Following good research practice, the study protocol was registered in the PROSPERO
database. The abstracts and articles were reviewed by two independent reviewers and data extraction
followed standardized procedures. We evaluated the risk of bias using a validated standardized
checklist. The set of studies included in the systematic review and particularly in the meta-analysis
included many large population-based studies, which strengthened the external validity of the study
in high resource countries. Results highlighted differences in the risk of SGA across different CHD
subgroups, which can be useful for risk assessment and for generating hypotheses about the relation
between CHD and growth restriction.

4.3. Limitations

Our study has certain limitations and caveats. Differences in practices and policies for prenatal
diagnosis and termination of pregnancy for fetal anomaly (TOPFA) across populations and over time
can result in changes in the proportion of SGA among newborns with CHD. As TOPFA concerns more
severe CHD, all else equal, increases in TOPFA is likely to decrease the proportion of SGA among
newborns with CHD. This is more likely to be the case for CHD associated with genetic or other
severe anomalies.

The long period of time (1972–2018) for the publications included in the review could have
affected the results, in part due to TOPFA but also changes in diagnosis of CHD and the and reference
populations used for SGA. However, 2/3 of studies were published after 2009 and the meta-analysis
results were often comparable for older and more recent studies.

The paucity of data on isolated subgroups of CHD complicated the interpretation of differences
in the proportion of SGA across subgroups of CHD. In addition, the use of large and administrative
databases in a number of studies could have been a source of inaccuracies because of coding and data
entry errors.

As the majority of studies were from high resource, Western countries, (over two thirds of studies
came from the USA), the results may not be generalizable to middle- and low-resource countries.

Finally, we did not evaluate publication bias due to the nature of the research question. Publication
bias occurs when negative findings are less likely to be published and can be measured via visual
inspection of funnel plots and Egger’s test. However, because there are no negative results in a
prevalence study, we deemed these methods inappropriate for our meta-analysis [75].
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5. Conclusions

Overall, the proportion of SGA in all CHD (20%) was 2-fold higher whereas that of isolated CHD
(14%) was as 1.4-fold higher than the expected proportion in the general population. Although the
available data have important limits, differences in the proportion of SGA for different subtypes of CHD
suggest that there are different pathophysiological mechanisms underlying the relation between CHD
and growth restriction. Further studies are required to disentangle the mechanisms of the association
between CHD and growth restriction and the risks associated with growth restriction for newborns
with CHD.
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CHD Congenital heart defects
SGA Small for gestational age
CASP Critical Appraisal Skills Programme
HLHS hypoplastic left heart syndrome
ToF Tetraology of Fallot
TGV transposition of great vessels
VSD ventricualar septal defect
CoAo coarctation of the aorta
AVSD atrioventricular septal defect
TA tricuspid atresia
CAT common truncus arteriosus
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