

Kuwait 4th Flow Measurement Technology Conference

> 3-5 December 2019 Hilton Kuwait Resort

OFFICIAL SPONSOR

Solaiman Solaiment Snr. Instrument Maintenance Engineer

Case Study: Flow Measurement Accuracy Loss-Gain

WHAT WAS THE PROBLEM?

- In previous years, KNPC had potential loss of approximately half million US dollars during ship loading at Oil Pier on selected meters in performance analysis.
- The root causes of the loss were investigated and identified, and remedial causes were implemented.

SOLVING THE PROBLEM

- The Oil Pier metering system was replaced with a system based on international API standards.
- New procedures/recommendations based on the analysis were followed taking into consideration several contributors including fluid properties. This resulted in an accurate representation of the fluid quantities dispatched.

CHALLENGES

- The Standard Metering Loading Reports are not been officially used by oil account, However TANK DIP METHOD AND Manual Calculations OF SP.GR. @ 60 F, was still used to issue the final loading/accounts calculations Certificates for Customers.
- Based on management directives a team was formed including all concerned Members. to analyze the performance of the new oil pier metering system. (121 liquid meters + 17 LPG meters) and come-up with recommendations.

CHALLENGES

- Team reviewed the complete system and observed that LPG meters (LP#1/2) are not calibrated/proved due to valves passing and ice formation in provers.
- Based on above, team decided to separate the review into two portions one as liquid and other as LPG. LPG portion was reviewed later after the valves repair.

ANALYSIS

- AFTER REVIEW OF LIQUID METERING SYSTEM, TEAM SELECTED SKID # 416 (NAPTHA) FOR PERFORMANCE ANALYSIS.
- THERE WERE THREE BATCHES/LOADING CONDUCTED ON SKID # 416, THE ANALYSIS DATA FROM METERING/SHIP/SHORE ARE AS FOLLOWS:

Ship Name	Date	Product	KNPC Metering System Figures (M. Tons)	Ship Figures (M. Tons)	Shore Figures (M. Tons)	Difference (M. Tons)	Loss in US \$
TORM SARA	17/8/2016	Naptha	53484	53102	53039	445 (Loss)	169,100
SUVERETTA	27/8/2016	Naptha	75710	75191	75257	453 (Loss)	172,140
SUVERETTA	22/9/2016	Naptha	50580	50311	50240	340 (Loss)	129,200

ANALYSIS

- FOR LAND LOADING, TEAM SELECTED METER # 361 (GAS OIL) FOR PERFORMANCE ANALYSIS.
- THERE WAS ONE BATCH/LOADING CONDUCTED ON METER # 361 (SUBIYAH-MEW), THE ANALYSIS DATA FROM METERING/TANK ARE AS FOLLOWS:

MTR #	Date	Product	KNPC Metering System Figure (M. Tons)	Tank Dip Figure (M. Tons)	Difference (M. Tons)	Loss in US \$
FQI-361	28/9/2016	Gas Oil	6244	6186	58 (Loss)	22,852

RECOMMENDATIONS

TEAM HAS THE FOLLOWING RECOMMENDATIONS:

- OPERATIONS SHIFT SHALL ACT AS SINGLE METERING FOCAL POINT FOR COORDINATION BETWEEN OPERATION AND OTHER RELATED DIVISIONS. (OIL ACCOUNTS/INST. MAINT./PROCESS CONTROL/LAB).
- MAKE PROCEDURE/GUIDELINES FOR STARTING BATCH / SAMPLING / PROVING / END BATCH / LAB DATA / OBTAIN OFFICIAL FINAL REPORT.
- SET STANDARD <u>CALIBRATION / PROVING</u> INTERVAL AS BELOW:
- ✓ EXPORTS METERS CALIBRATION/PROVING SHALL BE EVERY QUARTER.
- ✓ LAND LOADING METERS CALIBRATION/PROVING SHALL BE EVERY SIX MONTHS.

IMPLEMENTATION AND VALIDATION ANALYSIS

- All the recommendations were implemented.
- Loss was recovered however there will be always room for improvement.
- Analyzing the data and building statistical models helps to find the gap in the system and to validate the reading of meters.

Graph Builder

Frank annual banda a second second and the second and devications for second bands

TECHNOL

4 Tests			
Ν	DF	-LogLike	e RSquare (U)
49838	1	129.11082	2 0.0052
Test	Ch	iSquare	Prob>ChiSq
Likelihood F Pearson	Ratio	258.222 267.627	<.0001* <.0001*
Fisher's Exact Test	Prob	Alternat	tive Hypothesis
Left Right 2-Tail	1.0000 <.0001* <.0001*	Prob(Diff Prob(Diff Prob(Diff	fOrient[KNPCM-SHIP]=Positive) is greater for Change-Implement=N th fOrient[KNPCM-SHIP]=Positive) is greater for Change-Implement=Y tha fOrient[KNPCM-SHIP]=Positive) is different across Change-Implement

ABS[(NPCM-	SHIP]										
							Quantiles			Summary Statistics		
	$\langle \rangle$		•	•		•	100.0%	maximum	586	Mean	113.75	
1'							99.5%		586	Std Dev	125.79219	
							97.5%		586	Std Err Mean	23.77249	
							90.0%		317.2	Upper 95% Mean	162.52712	
							75.0%	quartile	132	Lower 95% Mean	64.972879	
							50.0%	median	72	N	28	
							25.0%	quartile	40.25			
							10.0%		14.9			
							2.5%		10			
			_				0.5%		10			
ó	100	200	300	400	500	600	0.0%	minimum	10			
•	100	200	500	-00	500	000						

Distributions Change-Implement=N, DiffOrient[KNPCM-SHIP]=Negitive

Distributions Change-Implement=N, DiffOrient[KNPCM-SHIP]=Positive

ABS[KNPCM-SHIP]

	Quant	tiles		Summary Stat	istics
	100.0%	maximum	392	Mean	89.592593
	99.5%		392	Std Dev	82.45509
	97.5%		338.525	Std Err Mean	7.9342447
	90.0%		195.3	Upper 95% Mean	105.32131
	75.0%	quartile	108.5	Lower 95% Mean	73.863878
	50.0%	median	62	N	108
	25.0%	quartile	31.5		
	10.0%		12.9		
	2.5%		3.725		
	0.5%		2		
0 50 100 150 200 250 300 350 400	0.0%	minimum	2		

tributions Change-Implement=Y, DiffOrier ABS[KNPCM-SHIP]	nt[KNPCN	1-SHIP]=N	egitive		
	Quant	iles	Summary Statistics		
	100.0%	maximum	997	Mean	83.6125
	99.5%		997	Std Dev	154.55346
	97.5%		742.925	Std Err Mean	17.279602
	90.0%		194	Upper 95% Mean	118.00669
	75.0%	quartile	92	Lower 95% Mean	49.218312
	50.0%	median	33.5	N	80
	25.0%	quartile	8.5		
	10.0%		3.1		
	2.5%		1		
	0.5%		1		
0 200 400 600 900 1000	0.0%	minimum	1		

Distributions Change-Implement=Y, DiffOrien ABS[KNPCM-SHIP]	t[KNPCN	/I-SHIP]=Po	sitive			
	Quantiles			Summary Statistics		
HIQ K.	100.0% 99.5% 97.5% 90.0% 75.0% 50.0%	maximum quartile median	1291 1193.5 667.5 276 148 68	Mean Std Dev Std Err Mean Upper 95% Mean Lower 95% Mean N	116.94208 156.08344 9.6985529 136.04049 97.843681 259	
	2.5% 2.5% 0.5% 0.0%	minimum	10 3.5 0.3 0			

READING MAIN CONTRIBUTOR FACTORS

• The results are interpretable.

Column Contributions								
Term	Number of Splits	G^2		Portion				
SHIPLine	5	16301.6776		0.6693				
Package	3	6011.68088		0.2468				
ABS%Diff[KNPCM-SHIP]	1	1640.4313		0.0674				
ABS\$(KNPCM-SHIP]@380	1	402.665117		0.0165				
BERTH	0	0		0.0000				
PRODUCT	0	0		0.0000				

BERTH

METER PACKAGE

PRODUCT

SHIP LINE

ABS difference %(KNPCM-Ship)

ABS difference %(KNPCM-Shore)

The decision tree model

EXPERIMENTAL MODEL APPROACH

The decision tree model can identify opportunities such as which ship liners would take a shore reading to verify! For some ship liners the model would indicate that we be better to take a shore reading [Red versus Blue]. Meter packages play a lesser role in % difference!

CONCLUSION

- AND THE RECEIPTION OF THE RECE
- Obtain confident flow measurements, with defined, repeatable and reproducible figures against certain conditions of measurement like fluid properties, distribution of velocity etc. which in return helped gain client accreditation.
- The statistical data analysis helped us Deeper understanding of Flow meter reading which, in turn, increased KNPC profitability.

THANK YOU

