

Kuwait 4th Flow Measurement Technology Conference

> 3-5 December 2019 Hilton Kuwait Resort

OFFICIAL SPONSOR

Mubarak Jaber Ali Challenges in Gas Metering

Content

- Introduction
- Findings
- Gas Meter Selection
- Flow Meter Application
- Investigation
- Gas Calculation Methodology & Standards
- Detailed GC's Observations & Analysis
 - Field Recalibrations
 - Improvement Activities
- Result

0

Conclusion & Recommendations

Introduction

- The associated gas produced at various crude production facilities at WK fields was so far processed at local gas compression units or centralized Booster Station.
- In reality, achieving an acceptable mass balance is a challenge.
- Practically, wide discrepancies (30%) between the predicted and the actual flow.
- OA TFT was formed to study and resolve this discrepancy by investigating into installation, DCS setup and other Process associated issues.

O A significant discrepancy was found in gas mass balance in a typical facility as shown below:

Observe the Gas flow measurement in a typical facility in WK is handled by four different types of flow meters, Orifice, Nozzle - Long Radius, Ultrasonic, and Annubar. They are distributed typically as follows:

Flow Meter Application

Meter Type Service / Location

Orifice &
Senior
OrificeMost common
Specifically, HP Sep gas outletLong Radius
NozzleLP Sep gas outlet

Ultrasonic Tank gas outlet (0.5" -5") TV flare & HP flare (5" - 45#) HP & LP gas export 45# to 900#)

Annubar TV compressors suction and HP flare header.

Investigation

AND THE REPORT OF THE REPORT O

- Investigation used the Gas Meter Datasheets and P&IDs as the basis.
- Investigation acquired the PVT gas analysis report for every gas stream for summer and winter cases
- Installations were inspected and the following were observations:
 - Image of the second second
 - Impulse lines were found long with many bends
 - US flow meters were not reading correctly
 - Some flow transmitters are field configured for square root extraction
- DCS Configurations were inspected and the following were the observations
 - DCS configured in a conventional manner for the datasheet case (only for pressure and temperature variation).
 - Some flow meter ranges were found less than the actual flow.
 - DCS for Long Radius Nozzle was configured as for orifice
 - DCS Configuration cannot deal with the gas compositional changes for summer and winter.

Gas Calculation Methodology & Standards The TFT implemented the following modifications in DCS configuration:

- Operation of AGA-8 and AGA-3 modules were used for configuring all orifice flow meters.
- Orifice module wrongly selected for the Long Radius Nozzle was corrected and reconfigured based on ISO 5167.
- On Annubar & US flow meters were reconfigured based on Vendor's sizing calculation.

OPAIL Impulse lines were flushed clean and Transmitters recalibrated without field square root extraction.

OUS flow meters were zero checked by vendor

Improvement Activities

- the following activities were implemented as part of a MOC to improve the gas flowmeters calculations in this GC:
- O AGA-3 calculations implemented in all orifice meters.
- In Flow calculations for all Nozzle Long Radius meters corrected as per the original FDS of RS-3 DCS.
- Ultrasonic flow calculations verified and corrected based on vendor calibration reports
- O Annubar flow calculations verified and corrected based on manufacturer vendor data.
- Base conditions considered for all meters corrected.
- Process parameters considered for all meters corrected based on instrument data sheets.
- DCS range scale matched with the Instrument range.
- Offline Flow calculation models were created in MS Excel and tested for the flow meters. Based on this, the parameters are being corrected in DCS.

Image After implementing the modifications, GC gas production figures were consistently found satisfactory and achieve the desired mass balance between produced (Gas in) and export (Gas out):

Result

Therefore, for a representative comparison, gas production was compared with gas obtained from wells GOR plus recycled condensate equivalent gas.

The graph show nearly perfect match.

CONCLUSION

It has been found that the performance of separator gas flow meters is least satisfactory, compared to other areas flowmeters, mainly due to the large quantity and different type of meters installed at this area.

Many of the flowmeters problems are inherited from the original design of the facility, such as Orifice/Flow Nozzles installation issues (straight length requirement, pressure tabs locations, impulse tubes layout) at separators area in the GC.

Other issues were found maintenance related, such as no recent inspection and calibration were performed to detect abnormality and measure the performance of the reading instrument.

RECOMMENDATIONS

Project Phase

- Indicative Engineering shall use Appropriate Datasheet for the selected meters (such as Long Radius Nozzle)
- P&IDs shall have distinct symbology for various flow meters selected for a Project.
- Insure meter installations are in accordance with Company Hook-up standards.
- DCS Configurations shall be set up for upstream production facilities as below:

Onfigure flow meter for winter and summer cases

Implement AGA-8 and AGA-3 for orifice flow meters

- Model other types of flow meters such as Annubar, Long Radius Nozzle, ultrasonic in order to provide dynamically correction
- Operation Phase
 - Inspect all flow meters at every Major survey.
 - Periodically analyze the gas compositions and accordingly enter into AGA-8 module

THANK YOU

.	ttalia.	Lon	s naurus r n	JW WIELET IV	louening								
Dynamic	Links											 	
FIT (Dp)	DP Transmitter (without field square extraction) (in F	120)										 	
PIT (pf)	Line Pressure (PSIG)	SuperCompressibi	lity +(7b/7f)									 	
TIT (Tf)	Line Temperature (Deg C)	1 pv = 3q1	(20/21)									 	
		Beta Calculator "β										 	
		Beta Rat	io (β) = $d/($	D)								 	
User (Ma	nual) Enties											 	
d	Nozzle Diameter (inch)	Density Calulation										 	
D	Line ID (inch)	Flowing	Density (Df)	= ((Pf+P)	b)*6895 * 9	9.86923x10)**-6 * M	W)/(0.08	203* <i>2f</i> *	(Tf+273.)	15))		
μ	Viscosity (cP)	Base Der	sity (Db) =	((<i>Pb</i>)*6895	5 * 9.86923	3x10**-6*	* <i>MW</i>)/(0.	0.08203* <i>Zb</i>	b * (Tb+)	73.15))			
η	Isentropic	buse bei	5109 (00)							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Pb	base Pressure (14.659 psig)												
ть	base Temperature (15.6 deg C)	Expansion Factor	Υ"										
MW	Molecular Weight	Expansio	n Factor (Y)	= 1 -((0.4	1+0.35 * β	3**2.5) Dp	/((Pf+P)	b)*6895 *	η)				
Zb	Compressibility factor												
Zf	Compressibility factor	Flow Calculator fo	r Cd=1 "Qn	ו"									
		Flow /C	(V+=	(d+0.254)	2 acout	$Df_{+}Dm_{+}2A$	0 7)) / (A	Sant(1 D	(1)				
		Flow (C	(m) - (1 *n	*(a*0.254)	**2 *5912(<i>DJ*DP*2</i> +0	5.7))/(1 *	sqrt(1-p	***))				
		Reynolds No Calcu	lation										
		Reynold	s No (Re) =	(4 *Qm)/(π* µ*0.001	L*D*0.0254	9						
		Discharge Coeffici	ent Calcula	tor "Cd"									-
		Cd = 0.9	965- 0.006	53*sqrt(β *	10**6)/Re)							 	
		Flow Corrected for	Cd "Ocorr"	•								 	
		0.000											
		ucorr =		JV .								 	

User (Manual) E	nties										
28-FE-2408		28-FE-2518		28-FE-2	2009	28-FE					
	28-FIT-2408		28-FIT-2518		28-FIT-	2009	28-FIT				
	28-	PIT-	28-PIT-		28-PI	T-	28-				
	28-	TIT-	28-	TIT-	28-TI	T-	28-T				
	V-5	201	V-6	201	V-12	01	V-1	202			
Pb (psig)	14.	14.69 14.69		.69	14.6	9	14.				
Tb (deg C)	15.6		15.6		15.6		15.6				
	Summer	Winter	Summer	Winter	Summer	Winter	Summer	Winter			
N2	0.237	0.203	0.237	0.203	0.237	0.203	0.367	0.026			
CO2	9.958	10.438	9.958	10.438	9.958	10.438	10.715	12.348			
H2S	2.83	2.807	2.83	2.807	2.83	2.807	6.736	6.759			
C1	60.185	62.576	60.185	62.576	60.185	62.576	27.008	31.063			
C2	15.381	14.76	15.381	14.76	15.381	14.76	22.627	24.296			
C3	7.676	6.613	7.676	6.613	7.676	6.613	19.432	17.283			
iC4	0.635	0.491	0.635	0.491	0.635	0.491	2.073	1.539			
nC4	1.795	1.313	1.795	1.313	1.795	1.313	6.048	4.149			
iC5	0.353	0.234	0.353	0.234	0.353	0.234	1.329	0.761			
nC5	0.481	0.305	0.481	0.305	0.481	0.305	1.802	0.966			
pC6	0.3	0.177	0.3	0.177	0.3	0.177	1.153	0.545			
pC7	0.119	0.063	0.119	0.063	0.119	0.063	0.467	0.19			
pC8	0.043	0.018	0.043	0.018	0.043	0.018	0.181	0.062			
pC9	0.007	0.002	0.007	0.002	0.007	0.002	0.054	0.013			
pC10	0	0	0	0	0	0	0.008	0			
Total	100	100	100	100	100	100	100	100			
MW	25.54	25.54	25.54	25.54	25.54	25.54	35.61	32.98			
Gas Gravity (Air=	=1 0.882	0.847	0.882	0.847	0.882	0.847	1.229	1.139			
Gas Density (kg/	/r 1.079	1.038	1.079	1.038	1.079	1.038	1.501	1.393			
Gross Heat Valu	ie 1228	1165	1228	1165	1228	1165	1693	1518			
Net Heat Value	(1117	1059	1117	1059	1117	1059	1552	1389			
Zb	0.893373	0.90122	0.932391	0.90122	2 0.85173835	0.90122	0.932391	0.928424			
Zf	0.89148	0.923499	0.949196	0.923499	9 0.89163229	0.923499	0.949196	0.930437			
	Long Rad	ius Nozzl	e Flow M	eter	NozzleTest I	Data	Ultrasonio	c Ori	ifice	A	nnubar

Ultrasonic Orifice Annubar NozzleTest Data

	0	RIFICE	LATES	S and FL	SHEET 23 OF 122						
INSTRUMENT	Rev.	BY	CHK'D	APPR.	DATE	 Specification No.:WK00-RP-IN-0131 					
DATA QUEET	0	QMY	TCQ	WYM	20,11.,97	Contract NO.:95G071					
DATA SHEET	1	HZY	TCQ	WYM	25,06,99						
						Requisition No.:WK01-ER-IN-0131					
						Purchase Order: PA/B-2007-051					
Document No.:	P&ID	DWG. No	.: GC28	B-DW-PR	-2203 1/1						
GC28-SP-IN-0131	Service	: LIG. C	RU. OIL	SEP. GA	SOUTLET						
IFICE PLATES			i.		ORIF	ICE FLANGES					
Other Nozzle-	long Ra	dius	7. T	7. Taps: Flange □ Vena Contracta Pipe □ Radius ✓ 8. Tap Size: 1/2in. ✓ Other							
Other AS	ME MFC	2-3M	8. T								
Nearest 1/8"			9. T								
	Other	6	10. M	10. Material: Steel 🗹 Other							
316 SS 💽						ST- D. Bert B					
316 SS			11. F	langes Ind	cluded By	Others V					
316 SS	radius fl	ow nozz	_ 11. F	langes Ind	cluded 🗌 By	Others 🗹					

TECHNOLOG

