

Kuwait 4th Flow Measurement Technology Conference

3-5 December 2019 Hilton Kuwait Resort

OFFICIAL SPONSOR

الراعــي الرسمــي

AHMED ALTERKAIT

Snr Eng, Manufacturing Excellence - KNPC

KNPC EFFORTS TOWARDS REDUCING HYDROCARBON LOSS & FLARE GAS MANAGEMENT

- Introduction.
- Challenges
- © Efforts Made:
 - Review the measurement methodology: losses type, Source, measurement & breakdown
 - Defining the uncertainties.
 - reconciliation method & Correction factors
- Conclusion

Introduction

- KNPC Operates highly complex Refineries.
 - ©Complex units & integration
 - Thousands of valves flowmeters & analyzers
 - More than 20 Elevated Flare Stacks

© Current Capacity over 700,000 BPD

Challenges

In 2015, High hydrocarbon loss (by balance) reported.
Refinery Loss (loss by balance) = Refinery input –
Refinery output – Fuels + (∆ Inventory).

The same was captured by SAB & raised in the parliament.

Efforts Made

- committee formed to review accounting methodologies& practices being followed.
- Defining the losses type, Source breakdown, accounting Methodologies
- Defining the uncertainty reasons.
- Defining the correction factors

Finding:

Loss Types:

Controllable loss: Losses that can be reduced to the bench mark levels based on the refinery configuration.

Non-Controllable loss: Losses that is part of normal refinery operation (i.e. side products or side loss)

Finding:

Controllable Losses	Breakdown	Measurement Method	Reference	
H/c loss through Flares (Ex H2)	13%	Flowmeters	Chevron feedback , International Standards	
H/c loss to Bio-treatment		Analysis + Calculation	Newly Identified, IP Document Page 34	
H/C in Sea Water effluent		Analysis + Calculation	Record Available , to be reported	
API Evaporation & Process Fugitives	6%	Analysis + Calculation	Records available, to be re- classified and reported as per the standards. IP Document Page 8	
Hydrogen Venting		Flowmeters	Record Available. To be included in loss report for MAA & MAB	

Finding:

Non-controllable Process Losses	Breakdown	Measurement Method	Reference	
Carbon loss as CO ₂ from HP Units	71%	Mass Balance, part of production	International Standard IP Doc Page 34 & Solomon Methodology	
H2 loss as H ₂ O from SRU Units		Mass Balance, part of production	International Standard, IP Doc page 7 Record available to be reported.	
Nitrogen Loss as NH3		Mass Balance, part of production	International Standard IP Doc Page 34 No record for MAA & SHU.	
FCC Coke		Heat Balance	Solomon Methodology	
CCR Coke	10%	Heat Balance	Newly Identified found in IP Document page 7	
Flare Pilot & Purge		Design figures	Solomon Methodology	
VOC Emissions		analysis & calculations	Solomon Methodology	
Hydrocarbon in dispatched Ash (WWT) / waste		analysis	Newly Identified , found in IP document Page 9	

WWW.KUWAIT-MEASUREMENT.COM

- Instrumentation errors
 - Test run to ensure instrumentation accuracy.
 - Systematic error.
 - Random error.
- Non-hydrocarbon interference.
 - Analyze the flared gas and deduct the purge gas quantities and the non hydrocarbon gases.
- Zero value losses
 - Part of the refinery operation.

Reconciliation method & Obtaining Correction factors

Reconciliation method <u>link</u>

FUP HYDROCARBON FLARE STACK (62-ST-101/102)

NEXT

Unit		Description	Flaring	Value	FLARE INSTRUMENTS SPECIFICATIONS		
	Tag. No				VALUE OPEN %	FLOW RANGE NM ³ /H	High Alarm
FUP Main Flow Meter (A)	62FR104.PV	FUP H/C FLARE 62-ST-101		0.18	-	0-20000	NIL
FUP Main Flow Meter (B)	62FR105.PV	FUP H/C FLARE 62-ST-102		0.26	-	0-20000	NIL
FUP ARD (Unit 81)	81Fl323.PV	REACTOR H/C COMM HDR		257.62	-	0-10000	13
	81Fl325.PV	FRACT. H/C COMM HDR		54.55	-	0-3000	13
	81Fl326.PV	COMP. COMM HDR		752.41	-	0-2000	13
	81PRC077.0P	V-026 FRACT GAS KOD	NO	36.07	50-100	-	NIL
FUP ARD (Unit 82)	82Fl323.PV	REACTOR H/C COMM HDR		10003.15	-	0-10000	NIL
HCR (Unit 84)	84FI513.PV	FLARE GAS REACTOR SIDE		-7.52	-	0-5000	50
	84FI514.PV	FLARE GAS FRACTIONATOR		761.36	-	0-2000	1000
	84PC116A.OP	V-110 FEED SURGE DRUM	NO	-5.00	50-100	-	NIL
	84PIC301.0P	V-301 CLPS Off Gas HR/FLARE	Yes	59.84	0-100	-	NIL
	84PIC304.0P	V- 320 FRACTIONATOR OVERHEAD	МО	-5.00	50-100	-	NIL

MAIN

Reconciliation method & Obtaining Correction factors

- Obtaining Correction factors
 - ➤ Lab analysis.
 - Field survey. Link
 - ➤ Mass Balance.

AccuTrack – a small hand-held device that measures the sound created by gases or liquids passing through an opening.

V-Pac – a much more sophisticated device to measure sound. Can estimate quantity of passing.

IR Camera – Multi-purpose tool that projects real-time picture showing temperature gradients.

Conclusion

LOSS BY BALANCE BREAKDOWNS

- 81% of the refinery reported loss found to be zero value, wherein 71% due to CO2 venting from HPU.
- ☐ Max Unaccountable Loss for MAA = 0.7% & MAB = 0.5%
- Totally new sources of losses have been identified.

Conclusion

- H/C Loss Book Value reduced by 81 %
- Improvement in physical HC Loss reported by Solomon since 2014 study.
- WINPC reached the boundary for the first quartile for 2018 Solomon study with hc loss of about 0.2X%.

THANK YOU

