

Kuwait 4th Flow Measurement Technology Conference

> 3-5 December 2019 Hilton Kuwait Resort

A Saturated Steam Injection Meter

Dr Richard Stevens

Ray H Narayan Measurement Consultant

Ray H Narayan, Measuremation Richard Stevens, DP Diagnostics Eric Sanford, Vortek Instruments

Introduction

Steam Injection for EOR

Introduction

- The design of steam injection projects requires a knowledge of the quality and pressure of steam at the surface before it enters the formation.
- Why is Quality Important? The great difference in density between steam and liquid during wet steam injection always results in steam override, that is, steam gathers on the top of the pay zone.
- In order to make such predictions, the <u>multiphase</u> flow and <u>mass & energy balance</u> equations must be solved simultaneously- this requires good measurement data of the homogenous mass/energy injection, Pressure/Temperature and steam quality.
- Further more Poor Steam Quality can compound operational issues with higher erosional velocities and premature equipment failure...

Phase Changes

 A change in the temperature of a solid, liquid or gas represents an increase/decrease in sensible heat. A change in state, such as ice turning into water or water into steam, represents an increase/decrease in latent heat.

Steam Primer : Steam Quality?

Introduction to steam flow meter

- There are <u>many</u> saturated (wet) steam flow applications throughout industry.
- <u>Most</u> are metered with <u>standard gas</u> meters assuming single phase conditions.
- <u>All steam meters</u> are adversely affected by liquids present within a steam flow.
- This presentation discusses the saturated (wet) steam performance of a <u>hybrid meter</u>, aka 'VorCone mass meter' and/or "TekValsys FloMass".

Vortex Shedding Principle

When any liquid, gas or vapor in motion hits a solid body in its path, it flows around it shedding vortices alternately on either side of the body.

The frequency of the vortices is directly proportional to the velocity of the fluid.

Vortex Meter:

 $Q_{v} = f (freq)$ Qv = K(freq)

$$Q_{\frac{lb}{s}} = \frac{\pi}{4} \sqrt{2g_{c} \times \rho} \frac{D_{ft}^{2} \beta^{2}}{\sqrt{1 - \beta^{4}}} \sqrt{\Delta P_{psf}} \times C_{f} \times Y$$

D

Mass flowrate

Measuring Steam Energy

Measuring Steam Energy

Basic steps for the steam energy calculation

Density

Importance of Density

- * Steam is a compressible fluid
- * Density is a function of both temperature and pressure
- * <u>Saturated steam</u>:Process Heating
 - Temperature and pressure are <u>dependent</u> variables .
 - Density can be calculated by measuring one variable P&T.
- * <u>Superheated steam:</u> Power- Motive Force
 - Temperature and pressure are <u>independent</u> variables.
 - Need to measure both to calculate density
- * <u>Wet Steam:</u> Nuisance Value Steam Quality !! VV Important

Steam Table

Pressure-Based Saturated Steam Table									
Press. (Abs.)	Temp.	Specific Volume		Specific Enthalpy					
psi	۴	ft ³ / Ib		Btu / Ib					
Р	T TIN	Vf	Vg	hf	hg	hfg			
0.25	59.323	0.016032	1235.5	27.382	1087.4	1060.1			
0.50	79.586	0.016071	641.5	47.623	1096.3	1048.6			
1.0	101.74	0.016136	333.60	69.73	1105.8	1036.1			
5.0	162.24	0.016407	73.532	130.20	1131.1	1000.9			
				161.26	1143.3	982.1			
20	227.96	0.016834	20.087	196.27	1156.3	960.1			
30	250.34	0.017009	13.7436	218.9	1164.1	945.2			
40	267.25	0.017151	10.4965	236.1	1169.8	933.6			
50	281.02	0.017274	8.5140	250.2	1174.1	923.9			
60	292.71	0.017383	7.1736	262.2	1177.6	915.4			
100.0						111.1			
70	302.93	0.017482	6.2050	272.7	1180.6	907.8			
80	312.04	0.017573	5.4711	282.1	1183.1	900.9			
90	320.28	0.017659	4.8953	290.7	1185.3	894.6			
100	327.82	0.017740	4.4310	298.5	1187.2	888.6			
110	334.79	0.01782	4.0484	305.8	1188.9	883.1			

Superheated Steam Table (Excerpt From Japan Society of Mechanical Engineer								
Pressure psi		Steam Temperature (°F)						
(Temperature °F		200	300	350	400	500		
10	v	38.84	44.98	48.02	51.03	57.04		
(193.21)	h	1146.6	1193.7	1217.1	1240.6	1287.8		
20 (227.96)	v h	Data for saturated steam left blank.	22.356 1191.4	23.900 1215.4	25.428 1239.2	28.457 1286.9		
30	v		14.810	15.859	16.892	18.929		
(250.34)	h		1189.0	1213.6	1237.8	1286.0		
40	v	тих	11.036	11.838 🚺	12.624	14.165		
(267.25)	h		1186.6	1211.7	1236.4	1285.0		
50	v	•	8.769	9.424	10.062	11.306		
(281.02)	h		1184.1	1209.9	1234.9	1284.1		

Temperature (°F) at 20 psi

Copyright TLV CO., LTD

Specific Volume (ft^s/lb) at 10 psi, 200°F

Copyright TLV CO., LTD.

WWW.KUWAIT-MEASUREMENT.COM

ĽV

A cognitive bias involving an over-reliance on a familiar tool.

Maslow's Hammer:

"I suppose if you are a proponent of Meter X every flow metering job tends to look like a job for Meter X."

Description: E.g. trying to make a *specific* flow meter type fit *all* applications, even when it really doesn't.

Early Hybrid Meter Designs

Density Insensitive Q_v meter: Density Sensitive Q_v meter: Density:

Mass:

 $Q_{v} = f(frequency)$ $Q_{v} = f(\rho, \Delta P)$ $\rho = f(Q_{v}, \Delta P)$ $Q_{m} = \rho Q_{v}$ www.kuwait-measurement

1. Give each meter enough consideration to operate.

2. Paired meters must operate over similar ranges.

3. Paired meters must not interfere with each other.

<u>Modern Day Hybrid Meter Design: VorCone</u>™

Vortex + Cone aka VorCone Hybrid Mass Flow Meter Methodology:

Vortex meter meter: Cone meter: Density:

Mass:

 $Q_{v} = f (frequency) << density independent$ $Q_{v} = f (\rho, \Delta P) <<< density dependent$ $\rho = f (Q_{v}, \Delta P) << solve for density (1^{st} unknown)$ $Q_{m} = \rho Q_{v} << solve for mass (2^{nd} unknown)$ WWW.KUWAIT-MEASUREMENT.CO

A Somewhat Balkanized Flow Meter Community

It is difficult to get a man to understand something when his salary depends upon his not understanding it.

Upton Sinclair —

This doesn't facilitate the R&D of newer technologies/ Hybrid meters!

VorCone Meter and Saturated (Wet) Steam

For known densities, wet gas flow metering has two unknowns: mg & ml,

Known: Мн = Mgas + M liquid= Mass Vapor (wet/sat. steam),

() Find the steam flow *for a known x*, using some correction factor 'f':

$$m_g = \frac{m_{g,app}}{f(x)}$$

(1) ISO gives a cone meter wet gas correction (f).

- ¹ Problem for Standard Vortex meters : if *x* not known, two unknowns and one equation. *Can't be solved!*
- ⁽¹⁾ You need two equations to solve for two unknowns dynamically !
- In the second second
- Steam tables give steam and water densities for known P & / or T conditions (Saturated conditions).

VorCone Meter with Saturated Steam Flow

- Steam injection flows are relatively high pressure velocity flows, i.e. mist / homogenous mix flows.
- Vortex meter predicts homogenous mixture volume.
- VorCone meter then predicts homogenous density.
- Phase densities known from steam tables...

Field Testing: Oil Truck Unloading

Portable truck compact separator with Coriolis gas and liquid reference system: 5% reference system uncertainty!

Field Testing: SteamQ*

Operation of the second strain of the second str

Applying ISO TR 12748 Cone Meter Wet Gas Correction with VorCone Meter Predicted x

3" VorCone Meter Boiler Outlet Location

Field Test Varying Steam Quality Validation

Conclusions

- For an unknown gas density the VorCone meter predicts dry gas mass flow to < 1% uncertainty (95% confidence!).</p>
- Saturated steam flows are usually metered by gas meters, with liquid induced gas prediction biases.
- Correction factors (if they exist for a given meter) require an externally supplied liquid loading – which is usually not known.
- The VorCone meter can internally predict x (down to 40%), and apply a 2-phase flow correction factor, thereby also predicting a more accurate Wet steam flow along with Steam Quality.

Continue...

T-MEASUREMEN

Conclusions

Questions

- The cone meter diagnostic system The cone meter diagnostic system
 - Two additional DP check meters

SUREMATIC

- An built in Expanded Hybrid Check meter with a 2nd independent liquid loading validation system.
- Next Project : Wet Gas (Lab Testing on Wet Gas completed early 2019, awaiting results from Field Trails !!)

MONITOR, VERIFY, AND TRUST YOUR DP METER

DIAGNOSTICS Monitor, Verify and Trust

WAIT-MEASUREME

THANK YOU

Vortex and Cone Meters in Series

www.ки Teknatement.com

