

Kuwait 4th Flow Measurement Technology Conference

> 3-5 December 2019 Hilton Kuwait Resort

OFFICIAL SPONSOR

HALUK TORAL Petroleum Software Ltd

PVT - EOS Modelling in Multiphase Flow Metering

Haluk Toral & Bahar Hosgor Petroleum Software Ltd

PVT - EOS Modelling in Multiphase Flow Metering

- 1. Why EOS ?
- 2. Background
 - 1. Phase Equilibrium Basics
 - 2. EOS Theory & Practice
 - 3. PVT Laboratory Process Simulation and Measurement
- 3. Foreground
 - 1. Field PID
 - 2. Fluid From Reservoir to MPFM and Stock Tank
 - 3. PSL EOS Model/Concept
 - 4. PSL Software
- 4. Uncertainty

6

esmerG

Why EOS ?

Sensitivity to GVF Liquid Rate Uncertainty

Why EOS ?

- MPFM accuracy depends strongly on GVF.
- GVF can be measured directly (only) by means of gamma absorption
- Indirect derivations are likely to be unreliable / inaccurate. Example of indirect derivation (Bernoulli standing on its head!) :
 - density ~ V^2 \rightarrow error in density = 2 x error in V
 - gvf ~ density of phases \rightarrow error in gvf = 2 error in V + error in liquid and gas densities
- So, we need EOS for phase density predictions in any case
- A whole science of thermodynamics and PVT lab practice is dedicated to prediction of GVF and phase densities by EOS.
- Why not EOS ?
- No better way !

BACKGROUND

Phase Equilibrium - EOS History

- Robert Boyle [1662] \rightarrow Ideal Gas \rightarrow P.V = m.R.T
- Van derWaal[1873] \rightarrow correction terms for real gas
- J Willard Gibbs [1876] → Free Energy G = H-TS → "For a closed system G is At Minimum under Equilibrium Conditions at constant P,T"
- Gilbert Lewis [1905] \rightarrow Fugacity
- Otto Redlich JNS Kwong [1949] → correction terms as fn(Tc,Pc)
- Soave Redlich Kwong [1973] → correction terms as fn(Tc,Pc,acentric factor) and binary interaction coefficients

EOS State of the Art Literature Review

Tune Up of EOS [1973] \rightarrow Regression of binary interaction coefficients/ C7+ characterisation / Psat / GOR stp to match CCE experiment.

1PTC-18334-MS.pdf T PETSOC-99-13-59.pdf 🔁 SPE-68745-MS.pdf DE-114702-MS.pdf T SPE-131046-MS.pdf T SPE-144025-MS.pdf T SPE-170912-MS.pdf SPE-171524-MS.pdf T SPE-172843-MS.pdf SPE-175563-MS.pdf SPE-175566-MS.pdf SPE-175877-MS.pdf SPE-183407-MS.pdf SPE-184314-MS.pdf SPE-196629-MS.pdf

IPTC-18334-MS

A Robust Workflow for Reliably Describing Reservoir Fluid PVT Properties Using Equation of State Models

Shu Pan, Asok Kumar Tharanivasan, Jiabao Jack Zhu, Kurt Schmidt, John Ratulowski, and Robert Fisher, Schlumberger

yright 2015, International Petroleum Technology Conference

This paper was prepared for presentation at the international Petroleum Technology Conference held in Doha, Qatar, 6-9 December 201

The paper was solucited for presentation by an IPTC Programme Committee following review of information contained in an aborted standard by the author(s). Contents of the paper, as presented, new to been reviewed by the international Patroisum Technology Continuone and an authort to comcetion by the author(s). The mainteel, as presented, does not necessarily native any position of the information of IPTC. Electricity reproduction, as the author(s) are autor(s) are author(s) are author(s)

Abstract

One of the key elements in modern reservoir exploration and management is describing reservoir fluid phase behavior and physical properties commonly referred to as pressure-volume-temperature, or PVT data. Typically, PVT data come from laboratory tests, empirical correlations, and Equation of State (EOS) models. It is common practice to describe the phase behavior or PVT data through EOS models tuned to laboratory measurements on reservoir fluid samples. After a sample is received at a laboratory, a portfolio of PVT laboratory tests are performed. The results are quality checked and the appropriate data are selected to tune an EOS model to obtain an accurate EOS description of the reservoir fluid. Each step in this process requires judgment and decisions from the corresponding domain experts to achieve physically sound PVT relations and calculate the required properties. Such EOS based modelling processes are time consuming, expensive and exposed to various risks due to multiple human interventions.

In the work presented in this paper, a study was conducted to explore the feasibility of a defined step EOS based modelling workflow using a limited, but defined, laboratory data set as the basis for characterizing and tuning the EOS model. In the development of a standardized workflow, a variety of EOS characterization and tuning methods were established to accommodate the diverse and complex nature of reservoir fluids. The methods considered include a modified Pedersen's method, a gamma distribution based method, and two methods based on single carbon number (SCN) composition and aromaticity factors. Despite their differences, the methods follow the principal objectives to be operator independent, robust, thermodynamically consistent, and numerically simple. Apart from the fluid composition, the only PVT data required for the proposed workflow were the saturation pressure, densities and the volumetric data obtained from constant composition expansion (CCE) measurements. The CCE test is advantageous because it is non-destructive to the sample being tested and can be performed quickly and reliably either in the laboratory or at a well-site. An optimized EOS model utilizing appropriate fluid characterization and tuning method is then selected based on a pre-defined Key Performance Indicator (KPI) derived from the deviation of the model predictions with the experimental data. With this optimal model defined, all other PVT data, such as those from sample destructive differential liberation (DL) or constant volume depletion (CVD) tests, can be reliably predicted.

Oil Volume Fraction %

Oil Density

Figure 7—Simulation of

PVT Laboratory Process Simulation and Measurement

- Process
 - CCE
 - CVD
 - Differential Liberation
 - Flash
- Measurement
 - GOR
 - Saturation pressure
 - Phase densities & molecular weights
 - Compositions (lumping of heavy ends)

Phase Equilibrium Basics

- Gibbs: Free Energy G=H-TS: "For a closed system G is At Minimum under Equilibrium Conditions at constant P,T"
- \rightarrow G of Liquid j = G of Vapor j
- \rightarrow Liquid Chemical Potential j = Gas Chemical Potentia
- →Liquid Fugacity j = Gas Fugacity j
- \rightarrow Fugacity = fn(P,T,V).

$$u_i = \left(rac{\partial G}{\partial n_i}
ight)_{P,T,n_i
eq n_1} = \overline{G}_i$$

$$\mu_i^{(l)} = \mu_i^{(v)} ext{ for all i=1,2, ... } \mathbf{n}_c$$

$$d\overline{G_i} = RTd \ln f_i @ ext{constant T}$$

Phase Envelope

FOREGROUND

Ramping up the EOS starting from no PVT

- Text Book ("Small"): Use text book fluid properties of typical reservoir fluids to set up the foundation model as best guess.
- Basic PVT Lab ("Medium"): Psat,GOR, API
- Compositional PVT Lab ("Large"): Compositional PVT lab analysis of various samples across the field.
- Separator Measurements ("X Large"): Tune up (one of above) against GOR, liquid and gas density (mobile separator at the well head or production separator).

More about "Small" (Text Book Fluid Types)

er	np	er	atı	ure
	···P			

Component	Dry Gas	Wet Gas	Gas Condensate	Near-Critical Oil	Volatile Oil	Black Oil
CO2	0.1	1.41	2.37	1.3	0.93	0.02
N2	2.07	0.25	0.31	0.56	0.21	0.34
C1	86.12	92.46	73.19	69.44	58.77	34.62
C2	5.91	3.18	7.8	7.88	7.57	4.11
C3	3.58	1.01	3.55	4.26	4.09	1.01
i-C4	1.72	0.28	0.71	0.89	0.91	0.76
n-C4		0.24	1.45	2.14	2.09	0.49
i-C5	0.5	0.13	0.64	0.9	0.77	0.43
n-C5		0.08	0.68	1.13	1.15	0.21
C6		0.14	1.09	1.46	1.75	1.61
C7+		0.82	8.21	10.04	21.76	56.4
Total	100	100	100	100	100	100
M C7+		130	184	219	228	274
<mark>γC7+</mark>		0.763	0.816	0.839	0.858	0.92
GOR, scf/bbl		105000	5450	3650	1490	300
GOR, m3/m3		18616	966	647	264	53
γoil		0.751	0.784	0.802	0.835	0.910
γΑΡΙ		57	49	45	38	24
vgas		0.61	0.7	0.71	0.7	0.63

[Cronquist, 1979 and Whitson 1983]

Psat, psia

Psat, bar

More About "Medium" (Initial PVT)

AZPROM	R-DS-002 DR MPFM (OIL D CPF INLET	Rev : 0 Date: 19.12.12 Page: 8 / 10		
Fluid Composition and Properfies:				
Component		% mole		
Nz		0.28		
CO2		3.5		
H ₂ S		3.07		
C,		35.17		
C2		9.36		
C,		6.11		
IC.		1.06		
nC.		3.32		
IC ₅		1.49		
nC ₅		2.07		
C.	3.19			
C ₇	3.1			
C ₈	3.25			
C.,	2.93			
C10	2.56			
C11	2.02			
C12*	17.54			
Sum		100		
Molar mass reservoir oil, [g/mol]		93.87		
Reservoir pressure. [bara]		495.88		
Reservoir temperature, [°C]		118.96		
Saturation Pressure @ tRes, bar	214			
Dynamic Viscosity, [cP]				
at Pres		0.43		
at Ps		0.32		
Results of Multistage Separation				
Formation Volume Factor (FVF), [m ³ /st.m ²]		1.500855		
solution gas-oil ratio, [Sm ³ /Sm ³]	162.995			
solution gas-oil ratio, [Sm ⁹ /ton]		190.145		
stock-tank oil density, [kg/m ²]		854.5		

Note: 1. Maximum H₂S Content: 3.8 mol %; Maximum CO₂ Content: 3.7 mol %;

Water content up to 25% should be considered.

2. For sour service conditions, the materials shall comply with NACE MR0175 / ISO 15158.

- TUNE UP PARAMETERS:
- C7+Mw adjusted to match Psat at 119C and Mw of Reservoir Oil
- C7+ density adjusted to match STO density.

Result a modified composition \rightarrow

Component	mol%
N2	0.286
CO2	3.572
H2S	3.133
C1	35.896
C2	9.553
C3	6.236
iC4	1.082
nC4	3.389
iC5	1.521
nC5	2.113
C6	3.256
C7	3.164
C8	3.317
C9	2.99
C10	2.613
C11	2.062
C12+	15.818

More about "Large" (Updated PVT)

			Composition, %	mol.]
Components	Mauddud D, E, G	Mauddud F, G	Mauddud B, D, E	Mauddud Average over Bd-4	Mauddud Average	
	Bd-5	Bd-4	Bd-4	Bd-4	Bd-4, Bd-5]
N ₂	0,585	0,449	0,369	0,376	0,481	1
H ₂ S	1,324	3,714	3,868	3,855	2,589]
CO ₂	4,183	3,583	3,789	3,771	3,977]
CH ₄	44,099	37,575	43,422	42,902	43,500]
C ₂ H ₆	10,434	9,751	10,532	10,462	10,448]
C ₃ H ₈	5,916	6,048	5,998	6,002	5,959	Pe Pe
iC ₄ H ₁₀	1,077	1,000	1,071	1,065	1,071	Saturation pressure
nC4H10	3,181	3,242	3,202	3,206	3,193	Saturation pressu
neo-C ₅ H ₁₂	0,020	0,009	0,011	0,011	0,015	Single stage:
iC ₅ H ₁₂	1,356	1,361	1,346	1,347	1,352	
nC ₅ H ₁₂	1,816	1,903	1,807	1,816	1,816	- Gas-oil ratio, m
C6	2,567	2,827	2,552	2,576	2,572	- Gas-oil ratio, m
Benzene	0,095	0,141	0,099	0,102	0,098	- STO density, g/s
C7	2,386	2,646	2,289	2,321	2,354	- Gas gravity (by
Toluene	0,340	0,396	0,342	0,346	0,343	Multistage separa
C8	2,152	2,424	2,068	2,100	2,126	- FVF
Ethylbenzene	0,107	0,138	0,101	0,104	0,105	- Gas-oil ratio, m
M- and P- Xylenes	0,325	0,351	0,357	0,356	0,341	- Gas-oil ratio, m ³ - STO density, g/s
O- Xylene	0,181	0,189	0,173	0,175	0,178	Differential liber
C9	1,659	1,881	1,592	1,617	1,638	- FVF
C10	1,888	2,149	1,826	1,854	1,871	- Gas-oil ratio m ³
C11	1,520	1,737	1,444	1,470	1,495	- Gas-oil ratio, m
C12	1,241	1,444	1,166	1,190	1,215	- Gas-oil fallo, ill
C13	1,113	1,291	1,036	1,059	1,086	- STO density, g/s
C14	0,978	1,139	0,902	0,923	0,950	Density at reserve
						Dynamic viscosit
C35	0,121	0,169	0,108	0,113	0,117	- at reservoir cond
C36+	1,777	3,387	1,890	2,023	1,900]
Total	100,000	100,000	100,000	100,000	100,000]
MC36+	635	697	663	666.0	650.5]

Parameter	Average over B, D, E units
Saturation pressure, MPa	26.66
Single stage:	
- FVF	1.832
- Gas-oil ratio, m³/m³	288
- Gas-oil ratio, m³/ton	336
 STO density, g/sm³ 	0.856
- Gas gravity (by air)	0.966
Multistage separation (BHS-1):	
- FVF	1.746
- Gas-oil ratio, m³/m³	269
- Gas-oil ratio, m³/ton	319
 STO density, g/sm³ 	0.842
Differential liberation (BHS-1):	
- FVF	1.792
- Gas-oil ratio, m ³ /m ³	281
- Gas-oil ratio, m³/ton	332
 STO density, g/sm³ 	0.846
Density at reservoir condition, g/sm3	0.652
Dynamic viscosity, mPa*s:	
- at reservoir condition	0.36

- TUNE UP PARAMETERS:
- C7+Mw adjusted to match Psat at 19C and Mw of Reservoir
- C7+ density adjusted to match STO density.
- Single stage separation GOR

Result a modified composition \rightarrow

More about "XLarge" (In-line Separator)

- 1. Determine Feedz (Reservoir Fluid Composition) from PVT
- 2. Measure: Separator.GOR in-line with MPFM
- 3. Perform flash at Feedz, Separator.P, Separator.T to determine:EOS.GOR, EOS.x and EOS.y
- 4. Update Feedz by recombining Separator.GOR, EOS.x, EOS.y
- 5. Go back to 2 and repeat until EOS.GOR=Separator.GOR
- 6. We now have synthetic fluid which matches Separator
- 7. Flash at MPFM.T, MPFM.P to obtain FluidDensity
- 8. Cd = fn (Separator.Mass,DP, FluidDensity)

S ESMER.EOS.M	aker v1.2.1				C	- • •
File Tools	Help					
Database GOR A	djustment Fla	ash Calculation				
Database Path : Fluid No:	C:\Users\P 2	KSW7\Desktop\PK	S\Project\Projects\B		ase\Bt Adjust	GOR
Input				Output		
Seperat	or Condition	s (Standard Con	litions) :	T	270 70074 440500	
P (Bar) :		1.0132		Theoretical GOR (Sm3/Sm3) :	2/0./30/1440582	
T("C) :		15		Resulting GOR (Sm3/Sm3) :	288.000012314037	
Target (GOR (Sm3/Sm3	3): 288		Converged in :	2	

UNCERTAINTY

Hydrodynamic Model Uncertainty Bottom Up Analysis of Venturi – Single Phase Flow

	Standard Uncertainty	Sensitivity Coefficient			Contribution
	u	s	S×u	$100 \times (S \times u)^2$	[%]
Orifice Bore Measurement Variance	0.04	2.14	0.086	0.733	4.0
Orifice Bore Micrometer Calibration	0.02	2.14	0.043	0.183	1.0
Meter Tube Measurement Variance	0.14	-0.19	-0.027	0.071	0.4
Meter Tube Micrometer Calibration	0.01	-0.19	-0.002	0.000	0.0
Discharge Coefficient	0.25	1.00	0.250	6.250	33.9
Expansion Factor	0.04	1.00	0.040	0.160	0.9
Densitometer Measurement Variance	0.10	0.50	0.050	0.250	1.4
Densitometer Calibration	0.58	0.50	0.290	8.410	45.7
ΔP Transmitter Measurement Variance	0.10	0.50	0.050	0.250	1.4
ΔP Transmitter Calibration	0.29	0.50	0.145	2.103	11.4

Total error as square root of sum of column 4/100 = 0.43%

From Kegel see References

23

MPFM Uncertainty

Total Flow Rate:

- Qt = Constant * Cd* (DP / Density)^0.5 (1.a)
- Density = DensityLiquid* (1-GVF) + DensityGas * GVF (1.b)

Liquid Rate:

Uncertainty:

- ErrorQt = ErrorGVF * 0.5/(1-GVF) (3.a)
- ErrorQl = [ErrorQt^2 + {ErrorGVF/ (1-GVF)}^2]^0.5

(2)

(3.b)

MPFM Uncertainty Total Flow Rate Error / GVF Error

MPFM Uncertainty Liquid Flow Rate Error / GVF Error

"Densitometer Error"

Thermodynamic Model Uncertainty - Sources of Error in EOS

- There are three separate sources of error.
- •
- Mis-match "text book" fluid type eg we try to match a reservoir to one of known typical fluid compositions as best as we can; what is the error arising from mis-match.
- Mis-match fluid analysis: eg we have PVT lab analysis of reservoir sample and we also have PVT data from the Separator; there is a difference between these; what is the error arising from mis-match.
- **Mis-match EOS.** Ie How good is the science of phase equilibrium anyway? What is the error arising from mis-match of theory to experiment (PVT data of a specific fluid)?

Summary of EOS Models (Example from the present study)

PT Flash at 20 bara and 50 °C												
		Small		Medium			Large			X-Large		
	VolatileOil			Initial PVT Data		Updated PVT Data			Tune Up Against Separator			
	Total	Vapor	Liquid	Total	Vapor	Liquid	Total	Vapor	Liquid	Total	Vapor	Liquid
Mole%	100	69.29	30.71	100	49.8	50.2	100	64.07	35.93	100	59.48	40.52
Weight%	100	20.66	79.34	100	12.76	87.24	100	21.28	78.72	100	17.71	82.29
Volume cm ³ /mol	957.47	1285.19	218.12	729.62	1266.02	197.58	881.12	1264.38	197.68	834.89	1266.87	200.83
GVF	1.0000	0.9300	0.0700	1.0000	0.8640	0.1360	1.0000	0.9194	0.0806	1.0000	0.9025	0.0975
Density kg/cm ³	71.3	15.8	808.1	128.4	19	823.8	82.5	19.1	805.5	95.8	18.8	809
Z Factor	0.7127	0.9566	0.1624	0.5431	0.9424	0.1471	0.6559	0.9411	0.1471	0.6215	0.943	0.1495
Molecular Weight	68.23	20.34	176.25	93.66	23.99	162.76	72.67	24.13	159.23	80.01	23.83	162.47

Effect of EOS Models – Worst Case

- Predict / estimate:
- Fluid Density & GVF = EOSFlash(VaryingComposition, SameP, SameT)
- Qt= Bernoulli(SamePipe, SameBeta, SameCd, SameDP^0.5, VaryingDensity^-0.5)
- Ql= Qt * (1-VaryingGVF)

	EOS			MIX LAW	BERNOULLI	DECOMPOSE		%Difference vs XLARC		
	RhoL	RhoG	GVF	RhoF	TOTAL FLOW RATE	LIQUID RATE	GAS RATE	TOTAL	LIQUID	GAS
XLARGE (tune up against separator GOR & density)	809	18.8	0.9025	95.8	0.1021	0.0100	0.0922	0.0	0.0	0.0
LARGE (tune up against compositional PVT)	805.5	19.1	0.9194	82.5	0.1101	0.0089	0.1012	7.8	-10.9	9.8
MEDIUM (tune up against simple PVT)	823.8	19	0.864	128.5	0.0882	0.0120	0.0762	-13.6	20.5	-17.3
SMALL (text book volatile oil composition)	808	15.8	0.93	71.3	0.1185	0.0083	0.1102	16.0	-16.7	19.5
AVG	811.5750	18.1750	0.9040	94.5088	0.1047	0.0098	0.0950			
STD	8.2819	1.5882	0.0290	24.7613	0.0129	0.0016	0.0145			
STD/AVG*100	1.0205	8.7386	3.2032	26.2000	12.2822	16.6849	15.2515			

Conclusions

- Accuracy of in-line MPFM is highly sensitive to GVF
- GVF can be measured by a gamma ray densitometer (only known direct measurement of GVF)
- Density prediction is essential in any case ie for Gamma also
- Prediction is a viable / reasonable alternative to measurement
- GVF, Liquid Density, Gas Density= EOS (P,T,z,tune up parameters)
- z and tune up parameters can be deduced from Stock Tank API → actual fluid PVT
 → in-line separator in increasing order of effectiveness.
- Prediction and tune up can be automated / implemented in the flow computer of the MPFM
- MPFM can be software based and independent of (manufacturer bound) hardware

References

- <u>https://www.e-education.psu.edu/png520/m13_p4.html</u>
- Thomas Kegel Basic Measurement Uncertainty 71st International School of Hydrocarbon Measurement, April 9-11, 1996, Oklahoma City, OK

IPTC-18334-MS.pdf
 PETSOC-99-13-59.pdf
 SPE-68745-MS.pdf
 SPE-114702-MS.pdf
 SPE-131046-MS.pdf
 SPE-144025-MS.pdf

THANK YOU

