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PVT - EOS Modelling in Multiphase Flow Metering 

1. Why EOS ?  
2. Background   

1. Phase Equilibrium Basics 
2. EOS Theory & Practice 
3. PVT Laboratory Process Simulation and Measurement   

3. Foreground  
1. Field PID  
2. Fluid From Reservoir to MPFM and Stock Tank 
3. PSL EOS Model/Concept  
4. PSL Software  

4. Uncertainty 
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Sensitivity to GVF 
Liquid Rate Uncertainty   

 

V err = 3% 
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Why EOS ? 
• MPFM accuracy depends strongly on GVF. 
• GVF can be measured directly (only) by means of gamma absorption 
• Indirect derivations are likely to be unreliable / inaccurate. Example of indirect 

derivation (Bernoulli standing on its head!) :  
• density ~ V^2  error in density = 2 x error in V  
• gvf ~ density of phases  error in gvf = 2 error in V + error in liquid and gas densities 

• So, we need EOS for phase density predictions in any case 
• A whole science of thermodynamics and PVT lab practice is dedicated to 

prediction of GVF and phase densities by EOS. 
 

• Why not EOS ? 
• No better way ! 
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BACKGROUND  
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Phase Equilibrium - EOS History 
• Robert Boyle [1662] Ideal Gas  P.V = m.R.T   

 
• Van derWaal[1873]  correction terms for real gas  

 
• J Willard Gibbs [ 1876]  Free Energy G = H-TS   “For a closed system G is At Minimum under 

Equilibrium Conditions at constant P,T” 
 

• Gilbert Lewis [1905]  Fugacity 
 

• Otto Redlich - JNS Kwong [1949]  correction terms as fn(Tc,Pc)  
 

• Soave Redlich Kwong [1973]  correction terms as fn(Tc,Pc,acentric factor) and binary interaction 
coefficients  
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EOS State of the Art  
Literature Review 
Tune Up of EOS [1973]   Regression of binary interaction coefficients/ C7+ characterisation /  Psat / 
GOR stp to match CCE experiment.  
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PVT Laboratory Process Simulation and Measurement 

•  Process 
• CCE 
• CVD 
• Differential Liberation 
• Flash 

• Measurement 
• GOR  
• Saturation pressure 
• Phase densities & molecular weights 
• Compositions (lumping of heavy ends) 
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Phase Equilibrium Basics  

• Gibbs: Free Energy G=H-TS:  “For a closed system G is At Minimum under Equilibrium 
Conditions at constant P,T” 
 

• G of Liquid j =  G of Vapor j  
 

• Liquid Chemical Potential j = Gas Chemical Potential j 
 

• Liquid Fugacity j  = Gas Fugacity j 
 

•  Fugacity = fn(P,T,V). 
 
• Fn(P,T,V) = 0 is named EOS 
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EOS - Flash Vaporisation 

GVF, Liquid Density, Gas Density  = fn( z, P, T) 
 

P,T 
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Phase Envelope 



16 esmerGL 
 

FOREGROUND 
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Ramping up the EOS starting from no PVT 

 

• Text Book (“Small”): Use text book fluid properties of typical reservoir fluids to set up the 
foundation model as best guess.  
 

• Basic PVT Lab (“Medium”): Psat,GOR, API  
 

• Compositional PVT Lab (“Large”): Compositional PVT lab analysis of various samples across 
the field. 

 

• Separator Measurements (“X Large”): Tune up (one of above) against GOR, liquid and gas 
density (mobile separator at the well head or production separator).   
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More about “Small” 
(Text Book Fluid Types) Component Dry Gas Wet Gas Gas Condensate Near-Critical Oil Volatile Oil Black Oil

CO2 0.1 1.41 2.37 1.3 0.93 0.02
N2 2.07 0.25 0.31 0.56 0.21 0.34
C1 86.12 92.46 73.19 69.44 58.77 34.62
C2 5.91 3.18 7.8 7.88 7.57 4.11
C3 3.58 1.01 3.55 4.26 4.09 1.01
i-C4 1.72 0.28 0.71 0.89 0.91 0.76
n-C4 0.24 1.45 2.14 2.09 0.49
i-C5 0.5 0.13 0.64 0.9 0.77 0.43
n-C5 0.08 0.68 1.13 1.15 0.21
C6 0.14 1.09 1.46 1.75 1.61
C7+ 0.82 8.21 10.04 21.76 56.4
Total 100 100 100 100 100 100

M C7+ 130 184 219 228 274
γC7+ 0.763 0.816 0.839 0.858 0.92

GOR, scf/bbl 105000 5450 3650 1490 300
GOR, m3/m3 18616 966 647 264 53

γoil 0.751 0.784 0.802 0.835 0.910
γAPI 57 49 45 38 24
γgas 0.61 0.7 0.71 0.7 0.63

Psat, psia 3430 6560 7015 5420 2810
Psat, bar 236 452 484 374 194

[Cronquist, 1979 and Whitson 1983] 
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More About “Medium” 
(Initial PVT) 

• TUNE UP PARAMETERS: 
 

• C7+Mw adjusted to match Psat at 
119C and Mw of Reservoir Oil 

• C7+ density adjusted to match 
STO density. 

 
Result a modified composition  
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More about “Large” 
(Updated PVT) 

• TUNE UP PARAMETERS: 
 

• C7+Mw adjusted to match Psat at 
19C and Mw of Reservoir 

• C7+ density adjusted to match 
STO density. 

• Single stage separation GOR 
 
Result a modified composition  
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More about “XLarge” 
(In-line Separator ) 

1. Determine Feedz (Reservoir Fluid Composition) 
from PVT 

2. Measure: Separator.GOR  in-line with MPFM 
3. Perform flash at Feedz, Separator.P,  Separator.T 

to determine:EOS.GOR, EOS.x and EOS.y 
4. Update Feedz by recombining Separator.GOR, 

EOS.x, EOS.y 
5. Go back to 2 and repeat until 

EOS.GOR=Separator.GOR 
6. We now have synthetic fluid which matches 

Separator 
7. Flash at MPFM.T, MPFM.P to obtain FluidDensity 
8.    Cd = fn (Separator.Mass,DP, FluidDensity) 
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UNCERTAINTY 
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Hydrodynamic Model Uncertainty 
Bottom Up Analysis of Venturi – Single Phase Flow   

Total error as square root of sum of column 4/100     = 0.43% 
 
From Kegel see References 
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MPFM Uncertainty 

Total Flow Rate: 
• Qt =  Constant * Cd* (DP / Density)^0.5   (1.a) 
• Density =  DensityLiquid* (1-GVF) + DensityGas * GVF (1.b) 

 
Liquid Rate: 
• Ql = Qt * (1-GVF)          (2) 

 
Uncertainty: 
• ErrorQt =  ErrorGVF * 0.5/ (1-GVF)    (3.a) 
• ErrorQl =  [ErrorQt^2 +  {ErrorGVF/ (1-GVF)}^2]^0.5  (3.b) 
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MPFM Uncertainty 
Total Flow Rate Error / GVF Error 
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MPFM Uncertainty 
Liquid Flow Rate Error / GVF Error 
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“Densitometer Error” 
Thermodynamic Model Uncertainty - Sources of Error in EOS  

• There are three separate sources of error. 
•   
• Mis-match “text book” fluid type  eg we try to match a reservoir to one of 

known – typical fluid compositions as best as we can; what is the error 
arising from mis-match. 

• Mis-match fluid analysis: eg we have PVT lab analysis of reservoir sample 
and we also have PVT data from the Separator; there is a difference 
between these; what is the error arising from mis-match. 

• Mis-match  EOS.  Ie How good is the science of phase equilibrium 
anyway?  What is the error arising from mis-match of theory to experiment 
(PVT data of a specific fluid)? 
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Summary of EOS Models  
(Example from the present study)   

 

Total Vapor Liquid Total Vapor Liquid Total Vapor Liquid Total Vapor Liquid
Mole% 100 69.29 30.71 100 49.8 50.2 100 64.07 35.93 100 59.48 40.52
Weight% 100 20.66 79.34 100 12.76 87.24 100 21.28 78.72 100 17.71 82.29
Volume  cm³/mol 957.47 1285.19 218.12 729.62 1266.02 197.58 881.12 1264.38 197.68 834.89 1266.87 200.83
GVF 1.0000 0.9300 0.0700 1.0000 0.8640 0.1360 1.0000 0.9194 0.0806 1.0000 0.9025 0.0975
Density kg/cm³ 71.3 15.8 808.1 128.4 19 823.8 82.5 19.1 805.5 95.8 18.8 809
Z Factor 0.7127 0.9566 0.1624 0.5431 0.9424 0.1471 0.6559 0.9411 0.1471 0.6215 0.943 0.1495
Molecular Weight 68.23 20.34 176.25 93.66 23.99 162.76 72.67 24.13 159.23 80.01 23.83 162.47

PT Flash at 20 bara and 50 °C
Small Medium Large X-Large

VolatileOil     Initial PVT Data Updated PVT Data Tune Up Against Separator
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Effect of EOS Models –  Worst Case  

• Predict / estimate: 
• Fluid Density & GVF  = EOSFlash(VaryingComposition, SameP, SameT)    
• Qt= Bernoulli( SamePipe, SameBeta, SameCd, SameDP^0.5, VaryingDensity^-0.5)  
• Ql= Qt * (1-VaryingGVF) 

 

MIX LAW BERNOULLI

RhoL RhoG GVF RhoF TOTAL FLOW RATE LIQUID RATE GAS RATE TOTAL LIQUID GAS
XLARGE  (tune up against separator GOR & density) 809 18.8 0.9025 95.8 0.1021 0.0100 0.0922 0.0 0.0 0.0
LARGE (tune up against compositional PVT) 805.5 19.1 0.9194 82.5 0.1101 0.0089 0.1012 7.8 -10.9 9.8
MEDIUM  (tune up against simple PVT) 823.8 19 0.864 128.5 0.0882 0.0120 0.0762 -13.6 20.5 -17.3
SMALL (text book volatile oil composition) 808 15.8 0.93 71.3 0.1185 0.0083 0.1102 16.0 -16.7 19.5

AVG 811.5750 18.1750 0.9040 94.5088 0.1047 0.0098 0.0950
STD 8.2819 1.5882 0.0290 24.7613 0.0129 0.0016 0.0145
STD/AVG*100 1.0205 8.7386 3.2032 26.2000 12.2822 16.6849 15.2515

%Difference vs XLARGEEOS DECOMPOSE
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Conclusions 

• Accuracy of in-line MPFM is highly sensitive to GVF 
• GVF can be measured by a gamma ray densitometer (only known direct 

measurement of GVF) 
• Density prediction is essential in any case ie for Gamma also  
• Prediction is a viable / reasonable alternative to measurement  
• GVF, Liquid Density, Gas Density= EOS (P,T,z,tune up parameters) 
• z and tune up parameters can be deduced from Stock Tank API  actual fluid PVT 
 in-line separator in increasing order of effectiveness. 

• Prediction and tune up can be automated / implemented in the flow computer of 
the MPFM 

• MPFM can be software based and independent of (manufacturer bound) 
hardware 
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THANK YOU 
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